CQLi Reference Manual
A chess query facility for PGN databases

Robert Gamble

February 12, 2022

ii

Contents

Intr ion 1
About CQL e e e e 1
About CQLI e e e e e e e e e 2
Typographical Conventions e 3
Notes for CQLO USEIS o v i ot e e e e e e e e e e e e e e 3
System Requirements e e e e e e 4

Supported Operating Systems e 4
Hardware Requirements e e 4
File Encoding e e e e e e e 4
Acknowledgements L e e e e 5

CQL Fundamentals 7
Theory of Operation e e e e e 7
Running CQLI e e e e e 7
Basic Concepts e 8

Source Comments. e e e e e e e 8
Filters and Types o i i i e e e e e e e e e e 8
Literals e e e e e e e e e e 9
Variables e e e e e e 9
Piece Designators e e e e e e e 13
Arithmetic Operators e e e e e e e e 14
Arithmetic Intrinsics L L e e e e 15
Comparison Filters e e e e e e 15
Logical Operators i e e e 16
SetOperators e 17
Other Set Operations e e e e 18
Position Operators e e e e e 18
With-position Filter 18
Positional Intersection L e 18
String Filters e e e e e e e 19
String Portrayal of Types e 21
Predefined Strings e e 22
String Slicing e e e e e 22
Code Points and Graphemes e 24
String Limitationso 24
Regular Expression Matching L e 25

iii

iv

Regex Syntax Fundamentals

Ranges

Comments

Comment Filters
The comment Filter
The originalcomment Filter

The removecomment Filter
Comments Added by CQLi

User Comments
Sort Comments
Header Comments
Match Comments

Auxiliary Comments

Position ID Comments
Comment Order
Comment Coalescing

Unique comments

Smart Comments
Position Does Not Match
Subsequent Filter Fails to Match

Enclosing Filter Does Not Match

Best Values

Board State Filters
The attackedby and attacks Filters

The black, white, btm, wtm, and sidetomove Filters

The check, mate, and stalemate Filters

Examples
The colortype and type Filters

The currentfen and standardfen Filters
Castling and X-FEN Format

En Passant Target Square

Extensions Supporting Variants

The fen Filter
The halfmoveclock Filter
The movenumber Filter
Pawn Structure Query Filters

Equivalent filters

Querying Other Pawn Structures

The power Filter

The ply Filter
The promotedpieces Filter

The zobristkey Filter

CONTENTS

CONTENTS v

Polyglot Compatibility e 58

A Note About Collisions e e e e 58

Board Geometry Filters 59
Direction Filters e e e e e e e e e e e 59
Examples e 60

The between Filter e e e e 60
The dark and Light Filters it iiee 61
The fileand rank Filters i e 62
The makesquare Filter e 62
makesquare with a String Argument 62
makesquare with Numeric Arguments 62

Ray Filters 63
Theray Filter. e 63
The xray Filter e e e 65
The pinfilter 66
Metadata Filters 69
The result Filter. e e e e e e e 69
Tag Filters e 70
The Standard Tag Filters e 71

The year Filter e e 71

The elo Filter e e e e e e e e e 71

The tag Filter e 72

The settag Filter e 72

The removetag Filter 74

The gamenumber Filter o 74
The Gametree Filters 75
SYNOPSIS . . . v v o e e e e e e e e e e e e e e e e s 75
The Game Tree o i i it e e e e e e e e e e e e 75
The ancestor and descendant Filters 79
The child and parent Filters i 79
The currentposition, initialposition, position, and positionid Filters 79
The initial and terminal Filters v v i i it 80
The mainline and variation Filters 80
The depth, distance, and lca Filters 80
The virtualmainline Filter i it 80
Position Relationship Filters 81
The find Filter o e e e e e 81
Auxiliary Comments e e e e e e e 81

UsSe CASES . . v v v v i e e e e e e e e e e e e e e 82

The echo Filter e e e e 83

vi CONTENTS

Auxiliary Comments e e e e e e e e e e 84
Usingechowithsort 85

USE CaASES . . . v v i i i e e e e e e e e e e e e e e e e e e e 85
Performance Considerations 86

The consecutivemoves Filter e 86
Auxiliary Comments e e e e e e e e e 87
The sort Filter 89
Multiple sort Filters e e e e 89
Conjunction of sort Filters 90

rt Comments e e e e e e 90
Unmatched sort Filters e e 90
Multiple Best Values e e e e 91
Examples 91
The move Filter 93
Description e e e e e e e e e e e e e e 93
move Filter Parameters e e e e 93
The from Parameter e e 94

The to Parameter e e e 95

The capture Parameter e 95

The promote Parameter e 95

The drop Parameter e e 96

The count Parameter e e e 96
The previous Parameter e e 96
The legal and pseudolegal Parameters 96

The reverse Parameter i i 97
Null moves e e e e e e e 98
Result of the move Filter e 98
Trailing comment Filter e 99
Constraints e e e e e e e e e e e e e 99
Examples e 100
The line Filter 103
Description e 103
Constituent Repetition e 103
Constituent Grouping e e e e e e e 104
Auxiliary Comments e e e e e 105
Multiple Matching Sequences 106
line Filter Parameters i i i e e e e e e 106
The firstmatch Parameter, 107
The lastposition Parameter 107
The nestban Parameter e 107

The nolinearize Parameter. o o v v i v ittt e 108

CONTENTS

The nonatomic Parameter v v it
The primary and secondary Parameters

The quiet Parameter .

The singlecolor Parameter i v i ittt i

Move Linearization
Atomic Evaluation

lection and Iteration Filter:

The if Filter
Iteration Filters

The square Iteration Filter

The piece Iteration Filter . e

The string Iteration Filter e

The while Filter
The loop Filter
Functions

Examples of Functions . . .

Transform Filters
Transform Types

Result of Transform Filters
The flipcolor and reversecolorfilters
Examples e
Dihedral Transform Filters @ i i i it i
The rotate90 Filter e
The fliphorizontal and flipvertical Filters
The flipfilter
Examples e e e e e e
The Shift Filters e e e e e e e
The shifthorizontal Filter
The shiftvertical Filter i it ittt
The shift Filter. o e e e e e e e e e
Elided Transforms e e e e e e
Restri hifts
The rotated5 Filter e e e e e
Transforms Do Not Operateon Sets
Elision of Duplicate Transforms i v ittt
Transformation Order e e
The notransform Filter e e
The currenttransform Filter ...

Imaginary Position Exploration

The Speculative move Filter

vii

108
108
108
108
108
109

111
111
112
112
113
114
114
114

115
115

119
120
121
121
122
123
124
124
124
124
125
126
126
126
126
127
128
129
130
131
131
132

133

viii CONTENTS

The imagine Filter e 134
Imaginary Positions e e e 135
The saveposition Filter 135
The currentmutation Filter e 135
The legalposition and reachableposition Filters. 137
The legalposition Filter 137
The reachableposition Filter 139
Chess Variants 151
Filters Supporting Variants e 152
The variant Filter it e e 152
The variantwin Filter 152
The variantloss Filter i ittt 153
The variantdraw Filter e 154
The variantend Filter e 154
Behavior of check, mate, and stalemate with Variants 155
Behavior of move with Variants L oo o 155
Using pin with Variants e 155
FEN Extensions for Variants e 156
Crazyhouse FEN Extensions vt v it i .. 156
Three-Check FEN Extensions i v it v iii i 156
Other Features 159
Piece Tracking e e e e 159
Piece Variables e e e e 160
The pieceid Filter e 160
NOtES o o e e e e e 161
The CL_PATH environment variable 161
The readfile and writefile Filters 162
The readfile Filter. i e e e 162
The writefile Filter e 163
NOtes o o e e e e 164
Multi-threaded Execution e e 164
Persistent Variables and Merge Strategies 164
Indeterminate Processing Order 166
Command Pipe Considerations, 166
Interacting with External Programs using Command Pipe 166
Writing Command Pipe Programs 167
Timeouts e e e e e e 168
Locating the Commandpipe Program 169
Notes for Windows e e 169
Notes for Linux and macOS i it 169
Debugging Command Pipe Programs 170

CONTENTS

Debugging Facilities e e
The message Filter e
The assert Filter e e e e
Printing the AST e e e e e
Colored Output and Unicode i,

The CQL Header e e e e e e e e
The gamenumber Parameter,
The input Parameter e e e e e
The matchcount Parameter
The matchstring Parameter
The output Parameter e
The result Parameter i i it e e e
The quiet Parameter o e e
The silent Parameter o i i i i i e e
The sort matchcount Parameter
The variations Parameter i

HHdAdbVI Database Interface
Position Attributes L
Study Attributes L e e
HHDB Option Interface it

Synoptic Examples

Expository Examples
Calculating Effective Attackers e
Batteries L e
Pinned Pieces L e
Putting it all Together
Final Notes e e e e e e e
Detecting 3-fold Repetition e
Properly Handling En Passant with 3-fold Repetition
Insufficient Mating Material
Calculating Extended GBR Codes
Static Evaluation Functions e
Most-occurring Events e
Most Active Piece L L
Most Captures by a Single Piece
Most Captures on a Single Square
Most Squares Visited by a Single Piece
Most Available Moves Lo
Longest Consecutive Sequences i v i i i e e e
Longest Series of Mutual Checks
Longest series of captures e
Longest series of non-capturingmoveso

ix

174
174
175
176
178
178
179
179
180
180
180
180
181
181
181
181
181
182
183
189

191

X CONTENTS

Longest symmetrical game e 217
Earliest or Latest Occurrence i v it i e e e e e 219
Earliest Exchange Game e 220
Latest Initial Capture e e e 220
Statistics e e e e 222
Game Lengths e e 222
Player Counts e 222
Generating and Solving Chess Problems 223
Direct Mate Puzzles e e 223
Who’s the Goof? e e e e e e 225
Switcheroos e e e 227
Retr rProblems e e e 231
Triple Loyds e e e e e e e 233
Chess MAazesS v v v i e e e e e e e e e e e e e e e 235
Filter Conspectus 239
List of Named Filters 0 e e e 239
Listof Keywords e e e e e e 243
Filter Precedence 0 i i i i e e e e e e e e 244
Type-induced Precedence Vitiation of Binary Infix Filters 245
Order of Evaluation e e 247
Commandline Options 249
General Options e e e e e 249
The -a/--append Option e 250
The --cql Option e e e e 250
The -g/--gamenumber Option 250

The --help Option e e 251
The -i/--input Option e 251
The --license Option i i e e e 251
The --1limit Option e e 251
The --lineincrement Option 252
The --mainline Option it 252
The --matchcount Option 252
The --matchstring Option 253
The --nestedcomments Option 253
The -o/--output Option 253
The --showmatches Option 254
The -s/--singlethreaded Option. 254
The --skipunknownvariants Option 254
The --threads Option e 254
The --variantalias Option, 255
The --variations Option e 255

The --version Option e e 255

CONTENTS xi

The -w/--warnlevel Option it 255
Feature Options e e e e e 256
The --alwayscomment/--nosmartcomments Option 256
The --keepallbest Option ittt 257
The --noasyncmessages Option 258
The --nocommitlog Option it 258
The --noremovecomment Option 258
The --noremovetag Option 258
The --nosettag Option, 259
The --pipetimeout Option 259
The --secure Option e e e 259
The --showdictionaries Option 259
PGN Output Options e e e e e e e 259
The --coalescecomments and --nocoalescecomments Options 260
The --compactcomments and --nocompactcomments Options 260
The --compactmoves and --nocompactmoves Options 261
The --compactvariations and --nocompactvariations Options 261
The --elidecomments and --noelidecomments Options 261
The --elidenags and --noelidenags Options 261
The --elidevariations and --noelidevariations Options 262
The --movenumberaftercomment / - -nomovenumberaftercomment Options 262
The --movenumberafternag and --nomovenumberafternag Options 262
The --movenumbers and --nomovenumbers Options 262
The --pgnlinewidthOption 262
The --splitmoves and --nosplitmoves Options 263
The --uniquecomments and --nouniquecomments Options 263
The --noheader, --silent, and --quiet Options 263
Filter Injection Options i e e e e e 264
Operation of Injected Filters, 265
The --assign Option e e 265
The --black Option e e 266
The --btm Option e e 266
The --event Option e 266
The --fen Option e e e 266
The --flip Option e 267
The --flipcolor Option i i it e e 267
The --fliphorizontal Option 267
The --flipvertical Option i it i e 267
The --player Option e e e e e e e 267
The --reversecolor Option, 267
The --result Option e 268
The --rotate45 Option e 268

The --rotate90 Option e 268

xii CONTENTS

The --shift Option e 268

The --shifthorizontal Option 268

The --shiftvertical Option 268

The --site Option e e 268

The --virtualmainline Option. 269

The --white Option e e 269

The --wtm Option e e 269

The --year Option e e e e e 269
Diagnostics 271
Diagnostic Format e e 271
Notes e 271
Warning Levels o . e e e e e e 272
Listof Warnings 0 e e e e e e e 272

Listof Infos e e e e 274
Revision History 277

Changes in Version 1.0.1 e e e 277

Changesin Version 1.0.2 e e e 278

Changes in Version 1.0.3 e e e 279
Appendix A: Differences Between CQL 6.1 281
CQL Language Differences e e 281
New Features in CQLiI 0 e e e e e e e e e 281

CQLi EXtensions e e e e e 283

Implementation Defined Behavior. 284

Other Observable Differences 284

CQL Frontend Differences e e 285
New Features e 285
Extensions e e e e e 286
Missing Functionality e 286

Other Differences e 286
Appendix B: Open Source Declarations 287

International Components for Unicode 287
Appendix C: Other Resources 289
Resources e e e 289
Databases e e e 289
Books and Periodicals e e e e 290

Appendix D: License 291

Introduction

The Chess Query Language (CQL) is a statically-typed, domain-specific language used to find
chess games and positions that match arbitrary criteria.

CQL queries can be used to inspect game characteristics (such as the information provided
in PGN tags, starting position, length of the game, etc), position characteristics (locations of
pieces on the board, side to move, move number, pins, xrays, squares attacked, pawn structure,
etc.), and complex relationships between different positions in a game.

CQL provides a rich set of powerful intrinsic operations and an expressive language by
which these may be combined to form concise queries that represent complex search criteria.
Matching games are extracted and information about matching components of the query may
be dynamically inserted into the game via comments or PGN tags.

About CQL

CQL was developed by Gady Costeff and Lewis Stiller around 2003 being described as a tool
“designed to allow researchers, authors, and players to search for games, problems, and studies
that match specific themes”. CQL 3 was introduced in EG 151 in January 2004 which provided
several examples including the following which finds a pair of positions within a game that are
identical except that White is missing between 1 and 10 pieces in the later position.

(match
:pgn heijden.pgn
:output out.pgn
:result 1-0 ;return only win studies
(position
:markall
:relation (:missingpiececount A 1 10)
)
)

CQL 3 provided powerful and innovative search features allowing users to classify endgame
studies by theme, extract studies containing specific positional characteristics and inter-
positional relationships. The CQL language remained largely unchanged until the release of
CQL 5 in 2017 which introduced a more expressive and approachable syntax and increased
functionality. Released in 2019, CQL 6 expanded upon this base and CQL 6.1 (the version

1

http://www.arves.org/arves/images/PDF/EG_PDF/eg151.pdf

2 INTRODUCTION

described in this manual) provides many refinements including support for string and dictionary
types, string regular expression matching, generalized tag manipulation, and a dedicated
interface for querying the HHdbVI endgame study database.

About CQLi

CQLi is a from-scratch clone of CQL which incorporates many new features and improvements
including:

e Imaginary position exploration

CQLi extends the move filter to allow exploration of positions not reached within
a recorded game. The new imagine filter allows the board to be temporarily
modified in arbitrary ways by placing, removing, or swapping pieces and querying
the resulting position. This feature may be used to find unplayed moves that would
result in mate, stalemate, or some other condition and is instrumental in using CQLi
to solve and generate various types of chess problems.

e Variant support

CQLi fully supports several popular chess variants including Chess960, Crazyhouse,
Racing Kings, Atomic, Losing Chess, Suicide, Giveaway, Three-check Chess, King of
the Hill, and Horde. The variant of each game is automatically determined from the
value of the Variant PGN tag allowing a single PGN file to contain games of different
variants. CQLi contains extensions to applicable filters to support these variants
and adds new filters to identify variants and their specific win/loss/draw conditions.

¢ Unicode support

CQLi supports UTF-8 encoded PGN and cql query files. Unicode characters are
supported and preserved within PGN strings and comments and within cql queries.
String operations are Unicode aware and pattern matching and comparison opera-
tions are performed using Unicode aware facilities.

e Powerful Extensibility

The Command Pipe feature allows CQL queries to easily interact with external pro-
grams in order to delegate complex operations, such as engine analysis, tablebase
lookup, ECO or rating assignments, etc., and utilize the results of those operations
within the query.

Other improvements include expressive diagnostics that more precisely identify issues and
distinguish errors from warnings, 64-bit numeric types, smarter “smart comments”, greater
flexibility over output PGN formatting, transactional evaluation of line filters, unreachable
position detection, support for persistent variables in multithreaded mode, implicit promoted
piece tracking, reverse move generation, Polyglot-compatible zobrist key calculation, and
scoped variables.

TYPOGRAPHICAL CONVENTIONS 3

Typographical Conventions

The following typographical conventions are used in this reference manual:

Italic text is used to introduce new terms, refer to specific chess variants, and as a
general emphasis mechanism.

Bold monospace text is used when referring to CQL filters, options, chess moves, and
inline code snippets.

External links are underlined in red and internal links are underlined in blue, such links
can be clicked on to navigate to the link target in most pdf readers.

CQL code blocks are presented with syntax highlighting.

Chess diagrams use colored circles to draw attention to specific pieces, highlighting to
emphasize particular squares, and arrows to represent pertinent moves or rays.

The colors used in this document are intended to be easily distinguishable by readers with
various forms of color-blindness. If you are color-blind and have difficulty differentiating the
colors used in this document, please let us know.

Notes for CQL6 Users

In most cases CQLi may be used as a drop-in replacement for CQL6 but there are some
differences in the feature set and default behaviors that current users of CQL6 should be
aware of. The most notable differences are provided below, see here for a more comprehensive
accounting of the differences between CQL6 and CQLI.

CQL6 runs in multithreaded mode by default but CQLi uses a single thread unless
multithreaded mode is enabled with the --threads option. The option --threads 0 will
cause CQLi to utilize the maximum number of concurrent threads supported by the host
hardware (which is similar to the default behavior of CQL6).

CQL6 combines multiple comments at a single position into a single conglomerate
comment. By default, CQLi will write multiple comments as separate individual comments,
e.g. e4 {A} {B} instead of e4 {A B}. Use the --coalescecomments option to obtain the
CQL6 behavior.

Variables declared in the body of an interation filter are not visible outside the filter
which may result in a syntax error for queries accepted by CQL6. The solution is to move
the declaration outside the iteration filter. See Variable Scopes for more information.

CQLi does not yet support the --gui, --guipgnstdin, or --guipgnstdout options which
are planned for a future version of CQLi. The option -0 stdout can be used to cause
matching games to be printed to stdout.

4 INTRODUCTION

System Requirements

Supported Operating Systems

Native 64-bit CQLi binaries are provided that support the following platforms:

e Windows 7 SP1 and up.
e macOS 10.14 and up (macos 11.0 and up for ARM64 builds).
e Linux kernel version 4.15+ with glibc version 2.27+.

Hardware Requirements

e x86-64 or ARM64 (macOS only) compatible CPU.

CQLi can take advantage of multiple cores using the --threads option. For rela-
tively slow queries, multi-threaded processing scales well to several processors.
For fast queries, 10 and other bottlenecks may limit the gains realized by parallel
processing.

e 64MB RAM (256MB recommended).

Since CQLi stores matching games in memory until the end of processing, the
amount of memory consumed by CQLi is largely proportional to the number of
games matching a particular query and the size of matching games. On average,
CQLi will utilize 1-2KB of memory per matching game. A query run on a PGN
database containing a million games that matches 10% will therefore consume
about 100-200 MB. There is no inherent limit to the amount of RAM that may be
utilized by CQLI.

File Encoding

PGN database and CQL query files processed by CQLi should be encoded in UTF-8 (note that
7-bit ASCII is a subset of UTF-8). Output generated by CQLi will similarly be UTF-8 encoded.
PGN and CQL files with other encodings (such as extended 8-bit ASCII encodings or UTF-16)
will need to first be converted to UTF-8 before being processed by CQLi. Such conversions
may be performed by tools such as iconv on Linux and macOS, or PowerShell on Windows.
Many text editors support conversion to UTF-8 as well. For example, to convert from CP 1251
to UTF-8 with the Windows PowerShell use:

Get-Content -Encoding ([System.Text.Encoding]::GetEncoding(1251))
test.pgn | Set-Content -Encoding utf8 test-utf8.pgn

To perform the same conversion with iconv use:

iconv -f WINDOWS-1251 -t UTF-8 test.pgn -o test-utf8.pgn

https://en.wikipedia.org/wiki/Iconv

ACKNOWLEDGEMENTS 5

Acknowledgements

Thanks to Lewis Stiller and Gady Costeff for designing the CQL language and making the CQL
program freely available.

Thanks to Lewis Stiller for his consistent and gracious support which was instrumental in
understanding many of the more subtle aspects and design choices of CQL and for the feedback
and encouragement he provided during the development of CQLi.

INTRODUCTION

CQL Fundamentals

Theory of Operation

The CQLi tool accepts a PGN file and a CQL query as input and outputs the games from the
PGN file that match the provided query. A game matches the query if any positions appearing
in the game match the query. A CQL query consists of one or more filters.

For each game processed by CQLi, a game tree is constructed to represent the game and any
variations present. Every position in a game has a unique sequential position id stating at 0 for
the initial position. Each position in the game is visited once, starting at the initial position and
progressing through the positions corresponding to the moves made in the game in order of
increasing position id. For each position, the supplied CQL query is evaluated. Each filter in
the CQL query is evaluated at the current position and either matches the position or not. As
soon as a filter fails to match, evaluation of the current position stops and the query is then
applied to the next position. A position matches if all of the filters in the query succeed for the
position. After all positions in the game have been evaluated, the game matches the query if at
least one position in the game matched.

Each game that matches the query is saved until processing of all games is complete. When
all games have been processed, matching games are sorted according to any provided sort
criteria, comments are added for matching positions, tag modifications are applied, and the
resulting games are written to the output file.

Running CQLi

CQLi is a command line application which can be run from a shell or command prompt or
another program such as a GUI interface or a batch script. CQLi accepts many options that
affect the behavior such as how many threads to use, PGN output formatting options, and
options that allow queries to be specified or modified on the command line. The full set of
available options are documented in Commandline Options. The most important options are
summarized below.

The -1i option is used to specify the name of the input PGN file which contains the games that
will be queried. The -o option is used to specify the name of the output PGN file, i.e. the file to
which CQLi will write matching games. The output file is truncated first if it already exists.
If no -o option is specified, matching games will be written to a file with a name constructed

7

8 CQL FUNDAMENTALS

from the provided CQL query file as explained in the description of the -o option. The -i and
-0 options both require exactly one argument: the name of the respective file. Options and
their corresponding arguments are separated by spaces. The final argument of a typical CQLi
invocation is the name of the file that contains the CQL query to be evaluated. For example:

cqli -i input.pgn -o output.pgn test.cql

will process the query contained in test.cql for each game in the input file input.pgn writing
any matching games to output.pgn.

The text of a CQL query may also be specified directly on the command line using the -cql
option, for example the command:

cqli -i input.pgn -o output.pgn -cql 'mate parent : check'

will find games where check was answered by checkmate. When specifying a query with -cql
that contains spaces or characters special to the shell, the argument to -cql must be quoted,
typically by surrounding the entire argument with single quotes.

Basic Concepts

Source Comments

CQL supports two types of comments: block comments and line comments. Block comments
are introduced by the character sequence /* and terminated by the sequence */. Block
comments do not nest. Line comments begin with the sequence // and continue until the end
of the line. Comments may appear anywhere between tokens in a CQL query and are removed
during parsing.

Filters and Types

Filter is the term used to refer to any component of a CQL query that is evaluated. Function
definitions, function calls, variable assignment, operators, operands, intrinsic operations,
looping constructs and even literal values are all filters.

Every filter has a static type and evaluation of the filter will either yield a value of that type, or
the special None value which represents the absence of a value.

There are several distinct types in CQLi:

Boolean - can represent the values true and false
String - represents a string of UTF-8 characters

Numeric - represents a 64-bit integral value

Set - represents a set of zero or more chessboard squares
Position - represents a specific position in a game

BASIC CONCEPTS 9

e Piece Identity - represents the identity of a piece (see Piece Tracking)
e Dictionary - a collection of key/value String pairs

A value is said to “match the position”, or simply “match” if it is not the special None value, the
false Boolean value, or an empty Set value. Note in particular that the Numeric value 0 and
the empty string are both “matching” values.

Literals

A literal is a single constant value that is known at parse time. Literals are supported for the
Boolean, String, Numeric, and Set types. The literal Boolean values are true and false. String
literals are any text (except for double quotes) surrounded by double quote characters. Numeric
literals consist of one or more digits. Set literals are specified using square designators such
as al, a-hl-2, or [al-6,d5,f6]. The special designator . represents all squares. The shortest
CQL query is just . which matches every position of every game and is functionally equivalent
to a CQL query of true.

Variables

Variables may hold values of any type except for Boolean. The type of a variable is static, the
value initially assigned to a variable determines its permanent type (except for piece variables
and dictionary variables which are declared using separate keywords). The names of variables
may consist of letters, digits, underscores and the $ character and may not begin with a digit.
There is no limit to the length of the name of a variable and all characters are significant.

A variable may not have the same name as a keyword or a sequence that would represent a
piece designator. It is good practice to start variable names with either an uppercase letter
or a $ to prevent accidential collision with reserved names and to serve as a visual cue to
differentiate variables from other names.

Variable names are case sensitive so var, Var, and VAR refer to three distinct names. Names
starting with __CQL are reserved by the CQL implementation.

Variables are assigned a value using the = filter. Assignment is how variables are declared in
CQL, the type of the variable is inferred from the value initially assigned to it. It is a syntax
error to reference a variable before it is declared.

The assignment filter (=) yields a Boolean value of true unless the value to be assigned is None
in which case the value of the variable is unchanged and the result of assignment is None. For
example, the query:

$check_pos = find check

will find the first position, starting with the current position, where one side is in check and
assign this position to $check_pos. If no such position is found, the find filter yields None,

10 CQL FUNDAMENTALS

$check_pos is not assigned, and the assignment itself does not match the position.

Conditional Set Assignment

An empty set value (e.g. []) does not match the position but it can be assigned to a variable and
the resulting assignment will match the position. The =? conditional set assignment filter may
be used to assign a Set variable only if the provided value is not the empty set. For example:

X = 1] // X holds the empty set
X = al // X holds the value al
X =? [] // X is not modified

The =7? filter yields true if the variable was assigned (possibly with the same value it already
held) and false otherwise.

Compound Assignment

Variables can be modified using the simple assignment filter = or the compound assignment
filters +=, -=, *=, /=, %=, |=, and &=. Like simple assignment, if the RHS of a compound
assignment filter is None, the variable is not modified and the assignment does not match the
position.

Unbound Variables

An unbound variable is one whose value is None, i.e. it does not hold a value. A variable of any
type except Dictionary type may be unbound. This can occur if the variable has not yet been
assigned such as if the initializing declaration is skipped. For example:

if 1 == 2 then X =1
str(X) // yields the string "<None>", X is unbound

A variable may be explicitly unbound using the unbind filter which take the name of a previously
declared variable as its only argument, e.g.:

unbind X

The isbound filter takes a single identifier as an argument and yields true if the identifier
corresponds to a bound variable and false otherwise (the specified identifier refers to an
unbound variable or does not refer to a variable at all). The isunbound filter operates similarly
but yields false if the provided identifier is a bound variable and true otherwise. For example:

X=1
Y=1
unbind Y

BASIC CONCEPTS 11

isbound X // true
isbound Y // false
isbound Z // false
isunbound X // false
isunbound Y // true
isunbound Z // true

Dictionary Variables

A dictionary holds a set of key-value pairs where the keys and the values both have String
type. A dictionary variable is declared using the dictionary keyword, no initializer is provided
with the declaration. For example, the below filter declares a dictionary variable named Dx:

dictionary Dx

Dictionary variables are persistent, their values are maintained across games. Given a dictio-
nary variable Dx, the key access filter Dx[key] will yield the value of key stored in Dx or None if
key does not exist in Dx. The key assignment filter Dx[key]= value will insert key into Dx with
the value value, if neither of key or value is None, or replace the value for key if key already
exists in Dx. The key access filter yields None if key is None or does not exist in Dx. If key or
value is None, the key assignment filter does not match the position and Dx is not modified.

An unbind filter of the form unbind Dx[key] will remove key from Dx. If unbind is applied to
a dictionary variable, e.g. unbind Dx, all of the keys are removed from the variable (but the
variable itself is not unbound, dictionary variables never have a value of None).

The number of keys in a dictionary can be obtained using the cardinality filter #, e.g. #Dx will
yield the number of key-value pairs present in Dx. The keys in a dictionary may be iterated
using the string iteration filter.

Persistent Variables

The values of variables are reset to None at the beginning of every game unless declared
with the persistent keyword (which immediately precedes the variable name) in which case
their value persists across all games. Numeric, Set, and String variables may be declared as
persistent. Dictionary variables are always persistent but may not be declared using the
persistent keyword. Persistent variables are initialized once, prior to evaluating the first
position in the first game. Persistent Numeric variables are initialized to zero, Set variables to
the empty set, and String variables to the empty string. Persistent variables may be declared
using a compound assignment operator, the type of the variable will be deduced from the RHS
of the compound assignment. For example:

persistent $total_positions += 1

12 CQL FUNDAMENTALS

declares a persistent Numeric variable named $total_positions that is incremented for
every evaluated position. Persistent variables may be unbound using the unbind filter in which
case they are never implicitly re-initialized (e.g. they are not re-initialized at the beginning of
the next game).

The final values of non-dictionary persistent variables are emitted at the end of processing.
The option --showdictionaries may be used to cause dictionary variables to be emitted along
with other persistent variables.

Persistent and dictionary variables may be declared using the quiet keyword to suppress
emission of their value after processing, this may be used to suppress emission of possibly very
long string variables. E.g.:

persistent quiet $str = ""

Variable Scopes

Every variable exists within a scope which dictates the portion of the query for which the
variable is visible (may be referenced). In CQLI], all variables are placed in either the global
scope or a block scope. Block scopes are introduced by function invocations and iteration
filters (piece, string, echo, loop, and square) and extend to the end of the respective filter.

Persistent variables and variables declared outside of a function or iteration filter exist in
the global scope. Parameter variables (parameters declared in a function parameter list and
the iteration variables of piece, string, echo, and square filters) always exist within their
corresponding block scope, shadowing any variable of the same name in an enclosing scope.

Other (non-persistent, non-parameter) variables used in a block scope either refer to a variable
in an enclosing scope or create a new variable in the current block scope. While variables
within an enclosing scope may be accessed in a block scope, variables created in a block scope
may not be accessed after the end of that scope. Block scopes may be nested and all block
scopes are enclosed by the global scope.

The following example illustrates the key points described above:

$param = "abc" // $param created in global scope.

$called = 0 // $called created in global scope.

function foo($param) { // $param shadows variable in enclosing scope.
$called = 1 // Refers to the above $called variable.
$local = abs $param // $local is not accessible outside of foo.
$local + $global // $global will be accessible at invocation.

}

$global = 10 // $global resides in the global scope.

$result = foo(5) // foo can access $global from here.

BASIC CONCEPTS 13

The first two lines declare a String variable named $param and a Numeric variable named
$called, both in the global scope. Function foo declares a parameter variable $param, a block
scope variable which will shadow the global variable $param within the function invocation.
The body of the function is not processed until the function is invoked. When this happens at
the end of the example, the first line of the body of foo modifies the global variable $called,
it does not create a new variable because the enclosing scope already has a variable named
$called and within foo the variable is not a parameter variable.

Since there is not already a variable named $local at the point where foo is invoked, the
$local variable will be installed in foo’s block scope and cannot be referenced outside of
the function. The variable $global does not exist when foo is defined but does exist when
foo is invoked so the reference in foo to $global will be that of the existing global scope
variable. Note that if foo was called before $global had been declared a parse error would
result as variables must be declared before they are referenced ($global is referenced, but
not declared, in foo).

Piece Designators
Piece designators are used to identify squares on a chessboard such as the squares where

certain pieces reside. A piece designator consists of a piece type designator and/or a square
designator.

Piece Type Designators

A simple piece type designator specifies a single class of chess pieces, the table below lists
the simple piece type designators used in CQL.

Designator | Description Designator | Description
K White king k Black king
Q White queen q Black queen
R White rook r Black rook
B White bishop b Black bishop
N White knight n Black knight
P White pawn p Black pawn
A Any white piece a Any black piece
- Unoccupied

For example, the piece designator Q represents the squares on which a white queen reside
in the position currently being evaluated. Multiple simple piece type designators may be
combined to form a compound piece type designator which consists of one or more simple

14 CQL FUNDAMENTALS

piece type designators enclosed in square brackets. For example, [Qq] represents squares
occupied by white and black queens and [_a] represents the set of squares not occupied by
white pieces, in the current position.

Square Designators

A square designator refers to specific squares on a chessboard by their files and/or ranks. A
simple square designator consists of a file designator followed by a rank designator. A file
designator is either a file name or two file names separated by a hyphen. A rank designator is
either a rank name or two rank names separated by a hypen. Valid file names are a, b, c, d, e,
f, g, and h. Valid rank names are 1, 2, 3, 4, 5, 6, 7, and 8.

Examples of simple square designators include al, e5, a-h8 (the squares on the 8t rank),
and d-e4-5 (the four center squares). Note that a simple square designator must consist of
both a file designator and a rank designator, e.g. b is a piece type designator, not a square
designator, use b1-8 to refer to all the squares in the b file.

Multiple simple square designators may be combined to form a compound square designator
which consists of one or more simple square designators, separated by commas, enclosed in
square brackets. For example, [al, h8] represents the squares al and h8 and [al-8,a-h8,d4]
represents the squares consisting of d4, the a file, and rank 8.

Combining Piece Type and Square Designators

A piece designator may consist of both a piece type designator and a square designator, either
of which may be a compound designator, in which the piece type designator precedes the
square designator. For example, Ra-h8 represents the squares occupied by white rooks on the
8t rank and [Kk][al,a8,hl1,h8] represents corner squares occupied by a king of either color.

A piece designator represents the squares that are given by the intersection of its piece type
designator and its square designator, if either one is missing then all squares are implied for
the missing component. For example, Ral is equivalent to R & al. Compound designators
represent the union of each simple designator in the bracketed list, e.g. [al-8,a-h8,d4] is
equivalent to al-8 | a-h8 | d4 and [Kk][al,a8,hl,h8] is equivalent to (K | k) & (al |
a8 | hl | h8) (except when appearing in shift transforms).

Piece designators are a cornerstone of the CQL language and provide a concise mechanism
to articulate a set of squares using both the static nature of the chess board (with square
designators) and the dynamic nature of piece occupancy (using piece type designators).

Arithmetic Operators

CQL provides the following arithmetic operator filters for operating on numeric types:

COMPARISON FILTERS 15

Filter | Description Example | Result
+ Addition 4 +5 9
- Subtraction 12 - 7 5
* Multiplication 5% 5 25
/ Integer Division | 10 / 3
% Modulus 10 % 3

Each of the above operators are binary infix filters that accept two numeric arguments and
yield a numeric result. The result matches the position unless one of the operands do not
match the position or a value of zero is used as the right-hand argument to / or %. Note that
division yields only the integral portion of the quotient as CQL does not have a fractional type.

Arithmetic Intrinsics

The following arithmetic intrinsic filters are available:

Filter Description Example Result
abs Absolute value abs -10 10

max Maximum of multiple values | max(4 2 7) 7

min Minimum of multiple values | min(-5 -2) -5
sqrt Square root sqrt 10 3

The sqrt filter does not match the position if its argument has a negative value, otherwise all
of the above filters match the position if any of their operands do. The abs and sqrt filters
take exactly one argument which does not need to be parenthesized. The max and min filters
require at least two arguments and the argument list must be parenthesized.

The result of the abs filter is the absolute value of its argument. The result of the sqrt filter
is the integer portion of the square root of its argument. The min and max filters yield the
smallest or largest value, respectively, of their argument list, ignoring arguments that do not
match the position.

Comparison Filters

Comparison filters can be used to compare numeric, set, string, and position filters.

16 CQL FUNDAMENTALS

Filter Description Example Result
== Test for equality al == flipcolor a8 | al

"abc" == "ABC" None
= Test for inequality "a" = "ab" true

10 !'= abs -10 false
< Less than 10 < 20 10

10 < 5 None
<= Less than or equal to 10 <= 10 10

2 <=1 None
> Greater than 20 > 10 20

"a" > "ab" None
>= Greater than or equal to | 20 >= 20 20

"ab" >= "a" "ab"

All of the comparison filters may be used with two Numeric, String, or Position operands, or
with one Numeric operand and one Set operand in which case the Set operand is implicitly
converted to a Numeric value that represents the set’s cardinality (the number of squares in
the set). The == and != filters may additionally be used with two Set arguments.

The ==, <=, <, >=, and > filters have the same type as their operands and yield the value of
the left-hand operand if the corresponding comparison holds and None if it does not. As the
comparison filters are also right-to-left associative, they may be chained to express an n-ary
relationship. For example $a < $b < $c will yield the value of $a if $b has a value between $a
and $c and None otherwise. These filters always yield None if one of their operands is None.

The != filter always yields a Boolean value and X != Y is equivalent to not X == Y for any X
and Y. In particular, if X or Y is None, the result of X != Y will be true, even if both X and Y are
None.

Logical Operators

CQL provides the and, or, and not logical operator filters. The and and or filters are binary
infix operators and not is a prefix operator. and matches the position if both its LHS and RHS
operands match the position and or matches the position if either of its operands match the
position. The not filter matches the position if its operand does not. The and and or filters
employ short-ciruited evaluation, i.e. the RHS of and is not evaluated if the LHS does not match
the position and the RHS of or is not evaluated if the LHS matches the position.

SET OPERATORS 17

Set Operators

CQL provides the following set operator filters:

Filter | Description Example Result
| Set union al | a8 [al,a8]
& Set intersection al-8 & a-h3-4 [a3,a4]
~ Set complement ~. [1]
Set cardinality #[c-f3-6] 16
in Set inclusion c3 in [al,b2,c3] | true

The | and & filters are binary infix filters that accept two set filter arguments Aand B.A | B
yields the union of sets A and B (A U B or the set of squares that are present in either A or B)
and A & B yields the intersection of sets A and B (A N B or the set of squares that are present in
both A and B). The ~ and # filters are unary prefix filters that accept one set filter argument. ~A
yields a set containing the squares not present in A and #A yields a numeric value representing
the number of squares present in A. Because the filter . yields a set of all the squares, ~.
yields the empty set.

The in binary infix filter accepts two set filter arguments. A in B yields true if A is a subset of
B (A C B or every square in A is also in B) and false otherwise and is equivalentto A & B ==
A. The query A in B and A != B can be used to determine if A is a proper subset of B (A C B
or A is a non-identical subset of B). Note that A in B is always true when A is the empty set
which should be considered when A could potentially be empty. In particular, use caution when
a piece variable is used on the LHS of the in filter. Piece variables are automatically converted
to a set representing the location of the piece but this set could be empty if the piece is not
currently on the board (i.e. it was previously captured). For example, the intention of the below
query is to find all positions where a white pawn has just promoted:

initial

piece Pawn in P {

find Pawn in a-h8

}

but also matches positions where a white pawn was captured as Pawn will convert to the empty
set in such positions causing Pawn in a-h8 to evaluate to true. In this case, the correct
solution is to use &:
initial
piece Pawn in P {
find Pawn & a-h8
}

so that when Pawn is empty, the result of Pawn & a-h8 will be the empty set which will not

18 CQL FUNDAMENTALS

match the position.

Other Set Operations

CQL does not provide a set difference operator but the set difference A \ B (the squares in A
that do not exist in B) can be calculated using A & ~B. The symmetric difference or disjunctive
union (aka exclusive OR or XOR) A A B is the set of squares that exist in exactly one of the
sets and can be calculated with either (A & ~B) | (B & ~A) or (A | B) & ~(A & B).

Position Operators

With-position Filter

The with-position filter (:) is a binary infix filter taking a LHS Position operand and an arbitrary
RHS filter. When the with-position filter is evaluated, the current position is set to the position
specified by the LHS operand, the RHS filter is evaluated, and the current position is then
restored. The result of the with-position filter has the type and value of the result of evaluating
the RHS filter unless the LHS operand does not refer to a valid position in which case the filter
yields None.

The with-position filter has several common use cases including accessing the source position
in an echo filter and accessing previously saved positions, including imaginary positions.

Positional Intersection

When the & operator is used with two Position operands, the result is the positional intersection
of the positions. The positional intersection of two positions is a set that represents the squares
which are either empty in both positions or occupied by pieces of the same type and color.
For example, the query:

echo (source target) {

differences = ~(source & target)
differences > 1
differences == A & source:_

}

will find positions that are identical except that White is missing two or more pieces in one
of the positions compared to the other. The filter ~(source & target) yields the squares
that are not occupied by the same pieces in both positions. The filter A & source:_ uses
set intersection to identify the squares occupied by white pieces in the target position that

STRING FILTERS 19

are empty in the source position, if this intersection has the same value as the differences
variable then the echo filter will match the position.
Note that for any positions X and Y the query:

X&Y

is equivalent to:

square sq in . {
X:colortype sq == Y:colortype sq
}

String Filters

Filter Description Example Result

+ String concatenation | "hello " + "world" "hello world"

String cardinality #"hello" 5

~~ Regex matching "XABACA" ~~ "(A.)+" "ABAC"

\n Regex group \1 "AC"
extraction

\-n Regex group index \-1 3

ascii Character-ordinal ascii "A" 65
conversion ascii 38 "&"

in Substring search "11" in "hello" true

indexof Substring index indexof ("11" "hello") | 2

int Numeric conversion | int("0123") 123

lowercase | Lowercases string lowercase "Hello" "hello"

str String conversion str(1 false "abc") "1falseabc"

uppercase | Uppercases string uppercase "Hello" "HELLO"

The + binary infix string filter takes two string arguments and yields a string value that is the
concatenation of its operands unless one of its operands does not match the position in which
case neither does the + filter. The compound assignment filter += may also be used to append
a string to a string variable, in general X += Y is much more efficient than X = X + Y and the
latter should be avoided for long strings.

When the argument to the unary prefix # cardinality filter is a string, it yields the number of
Unicode code points comprising the string (which may be different than the number of bytes
or graphemes). The individual code points in a string may be accessed using String Slicing.

20 CQL FUNDAMENTALS

The ~~ binary infix string filter is a regular expression matching and extraction operator. The
left-hand operand is a string filter and the right-hand operator is a string literal containing
a regular expression pattern. The result is a string that corresponds to the first matching
portion of the left-hand operand. Invalid regular expression patterns are diagnosed at query
compilation time. If the left-hand operand does not match the position or there is no pattern
match, the filter does not match the position.

By default, matching is case-insensitive and a match may occur anywhere in the string. See
Regex Matching Flags for performing case-insensitive matches and Anchored Patterns to limit
matches to the beginning or end of a string.

The \n group extraction filter yields the text of the n'" capture group associated with the most
recently evaluated regex filter. The \-n filter yields the starting index of the most recently
evaluated regex filter relative to the beginning of the target match string. If there was no
previously evaluated regex filter or the most recently evaluated regex filter did not match or
did not perform a capture corresponding to the provided group number, the result of these
filters will be None. These filters will yield None after the final iteration of a regex iteration
filter.

The ascii filter accepts either a String or a Numeric operand. When provided with a String
operand, if the string consists of exactly one character (code point) and the binary value of the
character is 127 or less, the value of the filter is this value, otherwise the filter yields None.
When provided with a Numeric operand in the range of 0-127, the result is the ASCII character
with the provided value.

The in binary infix string filter yields true if the value of the left-hand string operand appears
anywhere in the right-hand string operand, otherwise the filter does not match the position.

The indexof filter takes a parenthesized argument list consisting of two String arguments. If
the first string appears within the second string, the result is the index in the second string
at which the first string appears, otherwise the filter does not match the position. If the first
string appears multiple times in the second string, the result is the location of the earliest
occurrence.

The uppercase and lowercase filters each accept a single string filter argument and yield
the uppercased or lowercased string. Unicode-aware case conversion is performed by the
uppercase and lowercase filters, e.g.:

uppercase "Crianca" = "CRIANCA"
uppercase "Straul" = "STRAUSS"
lowercase "£' = "a"

The int filter accepts a single string argument and attempts to extract an integral value from
the string yielding the numeric result if successful. If no integral value could be extracted, the
int filter does not match the position. The int filter first skips any initial whitespace and then
looks for a sequence of decimal characters, optionally prefixed by a single plus or minus sign.

STRING FILTERS 21

The resulting value is converted to a numeric value. Non-decimal characters following a valid
numeric sequence are ignored.

The str filter accepts a parenthesized argument list consisting of one or more filters of any
type. The str filter converts each of its arguments to a string value and yields the concatenated
result. The str filter always matches the position. Values are converted to strings as described
below. If str is used with a single filter the parentheses are optional.

String Portrayal of Types

Any value can be converted to its string representation using the str filter. String conversion
also occurs for the arguments of the comment and message filters. The below table explains
how each type is portrayed in its string representation.

Type Portrayal description Examples
Numeric Decimal digit representation with a leading | 1234
minus sign for negative values. -34
Set A bracket enclosed, comma-separated list [d4,e4,d5,e5]
of squares in ascending rank-first order. [1
Boolean true or false true
Piece Piece type character followed by the Ke2
variable square on which it resides or [absent] if re8
the piece is not present on the board in the | Pg5
current position. [absent]
Position The string “move” followed by the move move 1(wtm)
number and either “(wtm)” or “(btm)” move 72(btm)

indicating the side to move. If the position | move 4(wtm)[14]
is not a mainline position, the position ID
enclosed in square brackets is appended.

Dictionary | The string “Dictionary with n entries” Dictionary with 2 entries:
(where n is the number of entries in the a: 123
dictionary) followed by a colon and newline | b: 456
(unless there are 0 entries) and each Dictionary with 1 entry:

key/value pair in the dictionary separated x: abc
by newlines.

String values are unchanged. A filter that does not match the position is portrayed as <None>
regardless of the type of the filter.

22 CQL FUNDAMENTALS

Predefined Strings

The five backslash sequences are filters that always yield the String value indicated in the
table below.

Sequence Value

\n Newline character
\r Carriage return
\t Tab

\" Double quote

\\ Backslash

Note that these are filters and only have a special meaning outside of string literals. For
example:

X ="A" + \n

will assign the string consisting of A followed by the newline character to X but the query:
X = n A\n n

will assign the string consisting of A followed by a backslash and the character n to X.

String Slicing

Substrings may be extracted with the [...] string slicing filter where ... is a string index
expression of the form i where i is an arbitrary numeric expression or the form m:n with m
and n being arbitrary numeric expressions. In the latter form, either or both of m and n may
be omitted. Indices are zero-indexed such that the first character (code point) of string x is
represented by x[0]. In the first form, x[i] yields the i'" character of the string x if i specifies
a valid index into the string x and None otherwise.

The index of string x specified by a negative value j is #x + j, thus x[-1] represents that last
character in x, x[-2] represents the next-to-last character in x, etc.

When the form x[m:n] is used, the result is the substring of x that starts at index m and ends
at index n-1. If the index specified by m is greater than or equal to the index specified by n,
or the index specified by m is not a valid index into the string x, the result is an empty string.
Otherwise, if the index specified by n is greater than the largest valid index for x, the substring
ends at the end of x. Likewise, if the index specified by m refers to a character before the start
of x, the substring starts at the beginning of x.

The result of string slicing is the extracted string (which may be empty) or None if the form
x[1] is used and i specifies an index that does not exist in x or if x does not match the position.

STRING FILTERS 23

Example Result
"abcde" [4] e
"abcde"[5] None
"abcde"[-5] "a"
"abcde"[-6] None
"abcde"[1:1] e
"abcde"[1:2] "b"
"abcde"[1:] "bcde"
"abcde"[:3] "abc"
"abcde"[-4:-1] "bed"
"abcde"[-4:100] "bcde"
"abcde"[-10:10] "abcde"
"abcde"[10:20] "
"abcde"[:] "abcde"

Note in particular that the first n characters of string x are obtained with x[:n] and the last n
characters of string x are obtained with x[-n:].

Slicing Assignment

If the left-hand side of a string slicing operation is a variable, the slice may be assigned
using the syntax x[...]= String where String is an arbitrary string filter. The portion of the
substring referenced by the string index expression is replaced with String. String may be a
different size than the referenced substring in which case the string value of x is modified to
accommodate the replacement. The result of the slicing assignment filter has Boolean type
and matches the position unless x is unbound, String does not match the position (i.e. it is
None), or the left-hand side of the assignment has the form x[i] and i specifies an index that
does not exist in x. If the slicing assignment does not match the position, x is not modified
although the reverse is not necessarily true, e.g. given a variable x of length 5, the filter x[10:]
= "abc" will match the position even though x is not modified.

Example Value of x Expression Result
x = "abc" x[0] = "" "bc" true
x = "abc" x[1] = "xxx" "axxxc" true
x = "abc" x[1:] = "" "a" true
x = "abc" x[:-2] = "" "bc" true
x = "abc" x[0:0] = "x" "xabc" true
x = "abc" x[5] = "x" "abc" None

24 CQL FUNDAMENTALS

Code Points and Graphemes

The values returned by the indexof, # string cardinality, and \-n group index filters, and the
values used in the string index expression of slicing filters, represent code point indices into
the corresponding strings, e.g. X[3] represents the fourth code point in X regardless of how
many bytes or code units are required to represent the string X (CQLi does not expose access
to the internal representation of Unicode code points). To iterate over the code points in a
string, the following query may be used:

$idx = 0
while ($idx < #X) {
$idx += 1

$codepoint = X[$idx]
}

Code points may also be iterated with the regex iteration filter which is more concise but
somewhat less efficient:
while (X ~~ ".") {
$codepoint = \0

}

To iterate over the extended grapheme clusters of a string, replace "." with "\X":

while (X ~~ "\X") {
$codepoint = \0
}

The starting code point offset of every grapheme cluster can be accessed using \ -0 and the
length of the grapheme, in code point units, obtained with #\0. For example, the query:

while (X ~~ "\X") {
message("Grapheme of length " #\0 " that starts at position " \-0 ": " \0)
}

String Limitations

Strings that require more than one billion UTF-16 code units to represent are not supported.

REGULAR EXPRESSION MATCHING 25

Regular Expression Matching

The ~~ filter performs regular expression (regex) matching. The RHS of ~~ must be a string
literal that contains a valid regular expression and the LHS is an arbitrary string. If the LHS is
None or the LHS string does not match the provided pattern, the result of ~~ is None, otherwise
the result is the portion of the LHS string that matched.

Regex Syntax Fundamentals

Regular expressions provide a powerful mechanism to search for patterns within text using
facilities such as repetition, alternation, and character classes.

A regular expression consists of characters that represent themselves (including letters and
digits) and characters with a special meaning (*, 2, +, {, }, (,), [, °, $, |, \, and .). The
backslash is used to escape special characters (to cause them to represent themselves) and to
give special meaning when preceding certain characters that are not normally special.

Repetition

Repetition operators allow part of a pattern to optionally match or to match multiple times.
The * operator specifies that the previous character is present zero or more times, + matches
the previous character one or more times, and ? matches zero or once. For example, in the
query:

var ~~ "\d+:\d+"

\d represents any digit and + indicates one or more of what immediately preceded it so \d+
represents one or more digits. The : matches itself so the pattern \d+:\d+ will match if var
contains a sequence consisting of one or more digits followed by a colon and one or more digits
immediately following the colon, e.g. "Time 1:23" will match the pattern (with the result being
"1:23") but "123:" and ":123" will not.

The basic repetition operators (*, +, 7, and {...}) will match as much of the string as possible
(i.e. they are greedy matching operators) without causing a match failure (i.e. they are non-
possessive). For example:

"ABBB" —— "AB*"

will match the entire string and:
"ABBBCABD" ~~ "ABxD"

will match "ABD". The first successful match is always returned regardless of whether a later
match would consume a larger portion of the string, e.g.:

26 CQL FUNDAMENTALS

"ABABBABBBB" ~~ "AB+"

will match the initial sequence "AB", not a later (and longer) sequence. Repetition operators
may be made non-greedy (matching as little as possible) by suffixing them with ?. For example:

"ABBB" ~~ "AB+7"

will match "AB" since the expression B+? requires at least one B and prefers to match the
smallest sequence. Non-greedy repetition is useful when trying to match delimited text. For
example:

"#A# #B# H#HCH" ~~ "H#.x#"

will match the # character followed by any number of any character (. represents any non-
newline character) followed by another #. To extract only the first delimited portion (#A#) the
non-greedy version of * may be used:

"#A# #BH# #CH" ~~ "#.x7#"

The basic greedy and non-greedy repetition operators are summarized in the below table.

Operator Description

? Matches zero or one times, prefers to match once.

* Matches zero or more times, matches as much as
possible.

+ Matches one or more times, matches as much as
possible.

{n} Matches exactly n times.

{n,m} Matches between n and m times, matching as many
times as possible.

{n,} Matches n or more times, matching as many times as
possible.

?? Matches zero or one times, prefers to match zero times.

*? Matches zero or more times, matches as little as
possible.

+? Matches one or more times, matches as little as possible.

{n,m}? Matches between n and m times, matching as few times

as possible.

{n,}? Matches n or more times, matching as few times as
possible.

REGULAR EXPRESSION MATCHING 27

Alternation

The | character is the alternation operator, A|B will match either A or B.

Character Classes

A character class matches any character from the specified square bracket-enclosed set. For
example, the regex ch[aio]p will match chap, chip, or chop. Ranges may be created by
separating two characters by a dash, e.g. [A-Z] will match any character with a Unicode code
point value between (inclusive) the values used to represent A and Z. A negated character
class can be specified by using " as the first character in the class in which case the class
matches anything except the contained values, e.g. ["A-Z] will match any character except A
through Z.

Character classes may be nested, e.g. [[A-Z][a-z]] is equivalent to [A-Za-z]. The && and
- - class operators may be used to perfrom set intersection and set subtraction, respectively,
to form the resulting class. For example [\p{S}--\p{Sm}] will match a non-math symbol
character and [\p{L}&&\p{script=Cyrl}] will match any Cyrillic letter. Any of the Escape
Sequences except for \A, \b, \B, \R, \X, \z, \Z, and backreferences may be used in a character
class. The POSIX character classes are also supported, e.g. [[:ascii:]] will match any ASCII
character.

Groups, Captures, and Backreferences

Parentheses are used to form a group which is treated as a unit, repetition operators following
such a group apply to the entire text matching the group. For example the pattern (\d+:)+ will
match a sequence of one or more groups of text, each containing one or more digits followed
by a colon.

By default, groups perform captures meaning that their corresponding matching text may be
referenced later in the pattern. Text matching a captured group is accessible using backrefer-
ences which consist of a backslash followed by an index i (starting at 1) that represents the
i capture group appearing in the pattern. For example, the pattern \d\d\d will match any
three digits but the pattern (\d)\1\1 will only match three identical digits (e.g. 111, 222, etc).

Backreferences may also appear outside of regular expression patterns to extract text matching
capture groups from the most recently evaluated ~~ filter. Additionally, \® may be used outside
of a pattern and yields the entire matched text (which is also the result of the ~~ filter). For
example, the following query will match the first appearance of a character appearing three or
more times in a row with the repeated character available after the match as \1:

"ABCCDEEEEF" ~~ "(.)\1{2,}"
\0 == "EEEE"
\1 == IIEII

https://en.wikipedia.org/wiki/Regular_expression#Character_classes

28

CQL FUNDAMENTALS

Groups may be nested to an arbitrary depth.

In addition to the basic grouping/capturing parentheses, there are several special parenthetical
constructs that introduce various behaviors. These are summarized in the table below.

Syntax

Description

(...)

(?7: ...)

(7= ...)

(7! ...)

(?<= ...)

(?<! ..))

(7> ...)
(?# ...)

(?<name>...

Capturing parentheses. The portion of string that matches ... will be
available via a backreference.

Named capturing parentheses. The portion of the string that matches ...
will be available both using a numeric backreference and as a named
group within the pattern using \k<name>.

Non-capturing parentheses. Used to group an expression without
capturing the contents of the matching portion.

Positive lookahead assertion. The ... portion must match at the current
position being matched but the matching portion is not consumed.
Negative lookahead assertion. The ... portion must not match at the
current position being matched.

Positive lookbehind assertion. The ... portion must match the part of the
text that immediately precedes the current position. The ... portion may
not contain the unbounded repetition (e.g. no + or * operators).

Negative lookbehind assertion. The ... porition must not match the part
of the text that immediately precedes the current position. The ...
portion may not contain unbounded repetition (e.g. no + or * operators).
Atomic capturing parentheses. The ... portion is matched possessively.

Comment parentheses. The entire parenthetical construct is ignored.

For example, the patterns (fl|spl)at, (?<prefix>fl|spl)at, and (?:fl|spl)at will all
match the same text, the difference being that fl/spl matching prefix will be available with
the \1 backreference after matching either of the first two cases and additionally available via
the named backreference \k<prefix> later in the same pattern in the second case.

Lookahead and lookbehind assertions require specific text to be present at a particular point in
a match in order to continue. Use cases for these constructs, as well as possessive matching,
are more advanced and outside the scope of this introduction.

Escape Sequences

The backslash \ character is used to escape regex meta characters in patterns and access
backreference content of previously matched capture groups. The backslash may also be used
to start one of several escape sequences as described in the below table.

REGULAR EXPRESSION MATCHING 29

Sequence | Description

\a Matches the BELL character, i.e. \u6007.

\A Matches the beginning of a string. Unlike *, will not match after a newline.

\b Matches at a word boundary.

\B Matches when the current position is not at a word boundary.

\cX Matches a control-X character where X is in the range A-Z.

\d Matches any decimal digit character (Unicode General Category Nd).

\D Matches any non-decimal digit character.

\e Matches the ESCAPE character, i.e. \u601B.

\E Marks the end of the most recent escape sequence begun with \E.

\f Matches a FORM FEED character, i.e. \u00ocC.

\h Matches a horizontal whitespace character, i.e. HORIZONTAL TABULATION
(\u0009) or Unicode General Category Zs.

\H Matches a non-horizontal whitespace character.

\k<name> Named capture backreference.

\n Matches a LINEFEED character, i.e. \u600A.

\N{NAME} Matches a code point with the specified character name, e.g. \N{Latin
Capital letter C with cedilla} will match the character ¢ (\u00C7).

\p{NAME} Matches a Unicode code point with the specified property name, e.g. \p{Lt}
will match a titlecase letter.

\P{NAME} Matches a character that does not have the specified property name.

\Q Quotes characters between the \Q and the next \E sequence, e.g. \Q()\E will
match the literal text () (instead of treating the parentheses as a group).

\r Matches a CARRIAGE RETURN character, i.e. \u000D.

\R Matches the sequence CARRIAGE RETURN + LINEFEED or a newline
character (one of \u000A, \u0o0B, \uo00C, \u6ooD, \uf085, \u2028, or
\u2029).

\s Matches a whitespace character (equivalent to the character class
[\t\n\f\r\p{Z}]).

\S Matches a non-whitespace character.

\t Matches a HORIZONTAL TABULATION character, i.e. \u0009.

\uhhhh Matches the Unicode code point with the provided 4-digit hexadecimal value.

\Uhhhhhhhh| Matches the Unicode code point with the provided 8-digit hexadecimal value.

\v Matches a newline character, i.e. \u600A, \u000B, \ueoeec, \uo6ooD, \u0085,
\u2028, or \u2029.

\V Matches a non-newline character.

\w Matches a word character, equivalent to

I\P{LI\p{NU\p{M}\p{Nd}\p{Pc}\u200c\u200d].

https://en.wikipedia.org/wiki/List_of_Unicode_characters
https://en.wikipedia.org/wiki/Unicode_character_property

30 CQL FUNDAMENTALS

Sequence | Description

\W Matches a non-word character.

\xhh Matches the code point with the provided two-digit hexadecimal value.
\x{hhhhhh} | Matches the code point with the provided 1-6 digit hexadecimal value.

\X Matches a Grapheme Cluster which may consist of multiple code points.

\z Matches the end of the string.

\Z Matches the end of the string or if \R$ would match at the current position.

Anchored Patterns

Patterns are not anchored by default meaning that the matching substring may occur in any
part of the string, the special ~ and $ characters may be used to match the beginning or end of
the string, respectively. For example:

var ~~ ""\d+"

will match one or more digits appearing at the start of the string.

Finding all Matches

When the condition of the while filter is a regular expression matching filter, the filter becomes
a regex iteration filter. In this case, the LHS of the ~~ operator will be evaluated once after
which the pattern provided on the RHS will applied to the LHS argument until it no longer
matches with the body of the while filter being evaluated after each match. For example:

while ("ABC" ~~ ".") {
message \0

}

will print A on the first iteration, B on the second, and C on the third and final iteration. The
result of this form of the while filter matches the position unless the LHS argument does not,
even if the pattern never matches.

Regex Matching Flags

There are several flags that may be embedded in a regular expression to change the default
matching behavior in different ways. The table below describes these flags.

https://www.unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries

REGULAR EXPRESSION MATCHING 31

Flag Default | Description
i OFF If set, matching occurs in a case-insensitive manner.
m ON If set, the "~ and $ anchors will match the beginning and

end of a line, respectively, in addition to matching the
beginning or end of a string.

S OFF If set, the . character will match a line terminator
(e.g. line-feed, vertical tab, form-feed, carriage-return,
or a carriage-return line-feed sequence).

w OFF If set, the \b sequence matches word boundaries in
accordance with Unicode UAX 29 which employs a
much more sophisticated, and slower, locale-dependent
behavior than the simple word/non-word character
classification employed when this flag is not set.

X OFF If set, whitespace in regular expressions does not have
any special meaning (use \s to match whitespace
instead) and everything from a # character to the end
of a line is ignored by regex parser. Using this flag
facilitates commenting complex regular expressions
that may also span multiple lines.

The values of the above flags may be set within a regular expression using the syntax:
(? {imswx}[-1{imswx})

which will set the flag values until the next flag setting expression appears or the end of the
pattern is reached. The flags may also be modified just for a sub-pattern using the syntax:

(? {imswx}[-]{imswx} : ...)

where ... is the pattern that should be subject to the flag modifications. Flags appearing
without a preceding - are turned ON, flags appearing after a - are turned OFF.

For example, the following query performs a case-insensitive search for “Michael Jones”:
$name ~~ "(?i)Michael Jones"

The below query performs a case-insensitive search for “Michael” followed by a case-sensitive
search for “Jones”:

$name ~~ "(?i)Michael (?-i)Jones"

The same effect could be realized by using the second form above to limit the flag modification
to a single sub-pattern:

$name ~~ "(?i:Michael) Jones"

The below pattern shows how multiple flags may be enabled and disabled at once:

32 CQL FUNDAMENTALS

(?is-mw)

which will turn the i and s flags ON and turn the m and w flags OFF.

Ranges

Several filters accept an optional range argument. A range consists of one or two numeric
filters, each of which must be either a numeric variable or a numeric constant. The first filter
in a range may be the operand of a negation operator. When a single range constituent is
provided the resulting range represents a single value, otherwise the range represents the set
of values between (and including) the supplied endpoints. Potential range elements must not
be parsable as part of a larger expression, e.g. find 1 10 -3 will be parsed as a find filter
with a range of [1:1] and a body of 10-3, not as a range of [1:10] with a body of -3.

The filters accepting a range argument are: consecutivemoves, find, line, and the direction
and transform filters (use of ranges in transform filters is deprecated). In the very unusual
situation where the body of one of these filters might unintentionally be interpreted as a range,
parentheses or braces can be used around the body to prevent it from being parsed as a range.

Ranges were used extensively in CQL 5 which did not possess arithmetic comparison operators
and instead relied on ranges to specify target values for many filters. For example, to find
positions where White is attacking 50 or more squares in CQL 5, the query attack 50 64 (A
.) was used. In CQL 6, the equivalent query is . attackedby A >= 50. CQL 6 retains ranges
in several places where the same functionality would not be easily expressed without ranges
but they play a much smaller role than they did in CQL 5.

Comments

Positions appearing in a recorded game in an input PGN file may contain comments and
additional comments may be added to matching positions during the evaluation of a CQL
query which will be included when the game is written to the output PGN file. Comments
are the primary mechanism by which matching positions and information related to matching
filters are communicated. CQLi provides several facilities to inspect comments appearing in
PGN games, remove existing comments, add new comments, and control the various types of
comments that are added during the operation of CQLI.

Comment Filters

The originalcomment filter provides access to comments appearing in the processed PGN file,
the comment filter allows insertion of new comments, and the removecomment filter allows the
removal of original comments appearing in the PGN file.

The comment Filter

The comment filter behaves like the str filter except that the string formed by the concatenation
of its arguments is used to form a comment at the current position. The comment filter always
yields a true value. Unless the --nosmartcomments option is used, Smart Comments ensures
that a comment added with the comment filter will not be written to the output PGN file if the
enclosing expression fails to match or the query ultimately does not match the position.

The originalcomment Filter

The originalcomment filter is used to inspect comments and annotations appearing in the
original PGN game text.

When originalcomment is not followed by a string literal it yields a string containing the
text of the original comment at the current position or None if there is no original comment.
Note that the string returned by originalcomment reflects the comments appearing in the
PGN text and are not affected by comment or removecomment filters that have been evaluated,
e.g. the original comment(s) may still be retrieved even after a removecomment filter has been
evaluated for the same position.

33

34 COMMENTS

Multiple Comments in a Position

If the current position has multiple original comments, these will be combined into a single
string, separated by newline characters, in the string returned by originalcomment. Because
newlines in original comments are replaced with a space character when being parsed, and
the regular expression anchoring characters ™ and $ will match the beginning or end of a line
terminated with a newline, the ~~ filter may be used to check if one of multiple comments at a
position consists entirely of some string. For example, if the a position contains the comments
ABC and 123, the query:

originalcomment ~~ ""123%"

«

will match the position. Since, by default, newlines are not matched with the
expression character, the query:

regular

originalcomment ~~ "B.x*2"

will not match. To search for a pattern that may span multiple consecutive comments (and
thus multiple lines in the string returned by originalcomment), either explicitly include the
newline character as in:

originalcomment ~~ "B(.|\n)x*2"

or enable the ability of . to match a newline within a group using the ?s: syntax:

originalcomment ~~ "B(?s:.)x*2"

Implicit Search with originalcomment

If originalcomment is immediately followed by a string literal that represents a Numeric
Annotation Glyph (NAG), or a corresponding typographic annotation symbol recognized by
CQLj, the filter yields true if there is a respective annotation at the position and false if
there is not. If originalcomment is immediately followed by a string literal that does not
represent such an annotation, the result has Boolean value and yields true if there is an
original comment at the current position and the provided string appears in the text of any of
the original comments at the current position and false otherwise.

NAGs and Symbolic Annotations with originalcomment

A NAG consists of a dollar sign ($) followed by one or more digits to form a decimal numeric
value between 0 and 255. NAGs are the standard way to represent simple annotations in a
PGN file. CQLi also recognizes several typographic annotation symbols that may follow a move
in a PGN game, the list of supported symbols and their corresponding NAG values is provided
in the table below.

COMMENT FILTERS

Symbol Meaning NAG Value
! good move 1
? poor move 2
[N brilliant move 3
?? blunder 4
1? interesting move 5
?! dubious move 6
= even position 10
+/= white advantage 14
=/+ black advantage 15
+/- significant white advantage | 16
-/+ significant black advantage 17
+- decisive white advantage 18
-+ decisive black advantage 19
Examples

Given the following PGN game text:

{pre-gam

e}

1l.e4! {Best by test}

1...e5 %
2.d4 $10

*

1 $113 {77}

35

the table below shows the results of several uses of originalcomment at each position of the

above game.

Filter Initial position After 1.e4 After 1...e5 After 2.d4
originalcomment "pre-game" "Best by test" " None
originalcomment ™" true true true false
originalcomment "a" true false false false
originalcomment "$1" false true true false
originalcomment "!" false true true false
originalcomment "$113" false false true false
originalcomment "=" false false false true
originalcomment "??" false false false false
"??" in originalcomment false false true None

Note in particular that originalcomment "$1" will match if the position contains either the
NAG $1 or the corresponding annotation symbol !. A comment whose text resembles a NAG or
symbolic annotation is still a comment and will not be matched by the NAG-querying version of
originalcomment, the in filter may be used to check for the presence of a comment containing
text that would be interpreted as a NAG by originalcomment. Positions may contain multiple

36 COMMENTS

NAGs but at most one symbolic annotation.

The removecomment Filter

The removecomment filter removes any original comments associated with the current position.
The removecomment filter always yields true.

Adroit use of comment and removecomment may be employed to remove or replace part of an
original comment. For example, to remove clock information embedded in comments that
looks like [%clk 0:09:16], the following query may be used:

if originalcomment ~~ ""(.*)\[%clk \d+:\d+:\d+\]1(.*)$" {
removecomment
comment (\1 \2)

To replace all instances of one string in a comment with another, e.g. all instances of “XX” with
“Y”, use the query:

NewComment = ""
OrigComment = originalcomment
IDX = 0 // Current starting index of OrigComment
while (OrigComment ~~ "XX") {
// Add the text between the last match and the start of this match
NewComment += OrigComment[IDX:\-0]
// Add the replacement text
NewComment += "Y"
// Update the index to the position after this match
IDX = \-0 + #\0
}
// Add any text following the last match
NewComment += OrigComment[IDX:]
// Replace the original comment with the new comment string
removecomment
comment NewComment

Note that removecomment does not employ smart-comment-like semantics. The effects of a
previously evaluated removecomment filter will be realized even if the same position later fails
to match.

The --noremovecomment option may be used to prevent comment removal with the
removecomment filter. In this case evaluation of removecomment filters still yield a true value
but the original comment is not removed when the PGN game is written to the output file.

COMMENTS ADDED BY CQLI 37

Comments Added by CQLi

There are six situations in which CQLi may add comments to a position which are described in
the following sections.

User Comments

User comments are added by the comment filter. These options always appear in the output
PGN file, subject to the provisions of Smart Comments, unless the --silent option or the
silent header parameter is used. The comment filter may be used to annotate a position with
multiple comments.

Sort Comments

Each sort filter appearing in a query will cause a corresponding sort comment to be inserted
at the beginning of each matching game with the best value encountered for the filter in that
game. Sort comments are not emitted for sort filters using the quiet keyword parameter or
when either the --silent option or the silent header parameter is used.

Header Comments

By default, every matching game contains a header comment which includes the game number
of the game which is the index of the game in the input PGN file. The --noheader option may
be used to suppress these comments.

Match Comments

By default, CQLi will annotate every matching position of a game with the comment CQL.
The --matchstring option or the matchstring header parameter may be used to change the
string used to annotate matching positions. Specifying an empty match string will effectively
suppress these comments. Match comments are also suppressed if the --silent or --quiet
options are used or if the silent or quiet parameters appear in the CQL header.

Auxiliary Comments

Auxiliary comments are those added during the operation of the consecutivemoves, echo,
find, and line filters. See the descriptions of these filters for information about the comments
they add. Auxiliary comments are suppressed if the --silent or --quiet options are used or
if the silent or quiet parameters appear in the CQL header.

38 COMMENTS

Position ID Comments

A position ID comment has the form id:position-id where position-id is the numeric
position ID value of the position in which the comment appears. Position ID comments are
added to variation positions to help identify them in the following situations:

e when a variation position appears as the argument to a message or comment filter.

e when the comment filter is evaluated in a variation position.

e when the source or target position in a matching iteration of the echo filter is a variation
position.

e when the starting or ending position of a matching line filter is a variation position.

Position ID comments are suppressed if auxiliary comments are suppressed.

Comment Order

Multiple comments added to a single position will appear in the following order: header
comment, match comment, sort comments, and user and auxiliary comments in the order
in which they were added by the corresponding filters. Header and sort comments appear
only at the initial position, before the first move. When multiple sort filters are present, sort
comments appear in the order in which their respective filters appear in the CQL query. CQLi
will never add more than one header comment to a game or more than one match comment to
a position.

If the game from the input PGN originally contained comments, all comments added by CQLi
in a given position will appear after any original comments at that position.

For example, given the following input:
{Pre-game comment} e4 {Best by test} {second comment} e5 =*

and the query:

sort line --> comment "comment 1"
--> comment "comment 2"
--> comment "comment 3"

the result will be emitted as:

{Pre-game comment} {Game number 1} {CQL} {<sort-id-0>: 3}
{comment 1} {Start line that ends at move 2(wtm)} 1l.e4

{Best by test} {second comment} {comment 2} 1...e5 {comment 3}
{End line of length 3 that starts at move 1l(wtm)} x*

COMMENT COALESCING 39

Comment Coalescing

By default, multiple comments at a position will be written out as multiple distinct comments
in the PGN file, each enclosed by a separate set of braces. If the --coalescecomments option
is used, multiple comments at a single position will be combined into a single comment with
space characters separating each coalesced comment component. For example, the query:

initial
comment("A" "B") comment "X" comment "Y"

produces three comments at the initial position: one containing AB, one containing X, and
one containing Y. By default, these comments would be represented in the PGN file as three
separate comments:

{AB} {X} {Y}
If comment coalescing is enabled, the combined comment will be represented as:
{AB X Y}

Separately written comments make it clear where each comment begins and ends but some
chess software does not handle multiple comments well and may not recognize or preserve
multiple comments.

Unique comments

By default, multiple comments with the same text at the same position are not written to
the output PGN file. This deduplication occurs before comment coalescing and includes both
original comments and comments added by CQLi. If there are duplicate original comments
at the same position, all but one of them is removed, even if the duplicate comments were
not adjacent. Duplicates between new and original comments are likewise removed. The
- -nouniquecomments option may be used to allow such duplicate comments.

Smart Comments

The Smart Comments mechanism ensures that only appropriate comments are added to the
resulting matching games by suppressing unnecessary comments. Comments added by filters
such as comment, line, and find are suppressed in the following cases:

e The position does not match the provided CQL query.

e A subsequent filter in the same compound expression fails to match.

e A filter enclosing the filter responsible for the comment does not match, even if the full
query ultimately does.

40 COMMENTS

e Comments added in a filter that only accumulates comments associated with the best
value encountered by the filter as described below.

Position Does Not Match

Any comments added while evaluating the current position will be suppressed if the position
ultimately does not match the query. For example:

comment "Terminal position"
terminal

will only add the comment “Terminal position” to positions that have no children as all other
positions will fail to match the terminal filter which will suppress preceding comments for
that position.

Subsequent Filter Fails to Match

If a later filter in the compound expression containing a comment does not match, previous
comments are elided even if the position ultimately matches the query. For example:

if terminal {
comment "End of mainline"
mainline

}

will only comment the end of the main line, even though the enclosing if filter will match all
non-terminal positions.

Enclosing Filter Does Not Match

If a comment is added by a filter that is enclosed by another filter that fails to match later, the
comment is suppressed. For example:

(2 < { comment("Pinned pieces:" pin) pin } < 5) or true
will only comment on positions in which there are 3-4 absolute pins as the enclosing comparison

will not otherwise match even though the query itself will match every position.

Best Values

The min, max, sort, line, sorted echo, and consecutivemoves filters accumulate only those
comments that are associated with the best value(s) encountered by those filters. The details
of effect of this behavior are described below.

SMART COMMENTS 41

min and max Filters

Comments appearing in a min or max filter will only be emitted for values that correspond to
the lowest or highest argument values. For example:

min({comment "A" 1} {comment "B" 2} {comment "X" 1} {comment "Y" 3})

will emit the comments “A” and “X”.

sort Filters

Comments appearing within a sort filter will only be emitted for the lowest or highest value
evaluated for the sort filter within a particular game. If multiple evaluations yield the same
best value, only the comments associated with the first occurrence of the best value are kept
unless the --keepallbest option is used. For example:

sort {
num_moves = move legal count
comment ("Number of moves available:" num_moves)
num_moves

}

will only emit a comment for the first position encountered having the maximum number of
moves of all evaluated positions.

line Filters

Comments appearing in a line filter are only emitted for the longest matching line found. For
example:

checks = 0
line --> { check checks += 1 comment("Check #" checks) } +

will only comment the checks associated with the longest line of checks found at the current
position. If there are multiple matching lines of the longest length in a line filter, only the
comments associated with one of the matching lines are kept unless the --keepallbest option
is used.

Sorted echo Filters

When the echo filter is used as the target of a sort filter, only the comments associated with
the largest matching value of the echo filter’s target are retained. If multiple evaluations of the
echo target filter yield the largest value, only the comments generated with the first evaluation
of the largest value are retained unless the --keepallbest option is used.

42 COMMENTS

The consecutivemoves Filter

Comments appearing in the arguments to the consecutivemoves filter are only retained for
the evaluation of the filter that yields the longest matching sequence.

Board State Filters

The attackedby and attacks Filters

The attackedby and attacks filters provide information about the squares attacked by one or
more pieces. Both filters are binary infix filters each accepting a Set filter for both their LHS
and RHS operands.

The attackedby filter has the form X attackedby Y and yields a Set value representing the
subset of squares in X which are attacked by pieces occupying squares in Y.

The attacks filter has the form X attacks Y and yields a Set value representing the set of
squares in X occupied by a piece that attacks a square in Y.

A piece P attacks square S if a king of the opposite color on square S would be in check by
piece P. In particular, P can attack S even if P may not legally move to S, e.g. P is pinned,
it’s king is in check, or it is not P’s side to move. The pin filter can be used to determine if
attacking pieces are pinned.

////

g/ / //%
%ﬁ% /@/E@

a b e

N w H w1 (o)} ~ oo
N N

=
\\\\

Squares attacked by white and black pieces

43

44 BOARD STATE FILTERS

In the above diagram, the squares attacked by white pieces are highlighted in blue and the
squares attacked by black pieces are highlighted in red (this is a very unusual position in that
all squares are attacked by exactly one side). The query:

. attackedby A

will yield the set of squares atttacked by white pieces (those shown in blue above) and:

. attackedby a

will yield the set of squares attacked by black pieces (those shown in red above). The following
query was used to find a position where all squares were attacked by exactly one side:

. attackedby A & . attackedby a == []
. attackedby A | . attackedby a == 64

Note that X attackedby Y will match the position only when Y attacks X would (and vice versa)
but the result of these filters is not the same: the former yields the set of squares attacked
while the latter yields the pieces which attack these squares. For example:

A attacks k

will yield the squares occupied by white pieces which attack the black king but:
k attackedby A

will yield the square on which the attacked king resides. The following query will find squares
on Black’s side of the board that are attacked by White but not defended by Black:

a-h5-8 & (. attackedby A & ~ . attackedby a)

To find undefended black pieces attacked by White use:
a attackedby A & ~ a attackedby a

The below query will find underdefended black pieces attacked by White:

square sq in a {

a attacks sq

#A attacks sq > a attacks sq
}

The attackedby and attacks filters have a higher precedence (bind tighter) than most other
operators including the &, |, and ~ set filters, comparison filters, and the cardinality filter (#).
Consequently, queries such as a attackedby A & ~ a attackedby a and #A attacks sq >
a attacks sq used above need not be parenthesized to obtain the expected meaning.

See Calculating Effective Attackers for examples of how to exclude pinned attackers and/or
include battery attackers.

CQL 6.1 allows the attackedby filter to be spelled using two tokens: attacked by. For

THE BLACK, WHITE, BTM, WTM, AND SIDETOMOVE FILTERS 45

backwards-compatibility CQLi does the same.

The black, white, btm, wtm, and sidetomove Filters

The btm, wtm, and sidetomove filters provide information about the side to move in the current
position. The btm filter yields true if it is Black to move and the wtm filter yields true if it
is White to move, these filters yield false otherwise. The sidetomove filter yields the value
of either black or white corresponding to the side that has the move. black and white are
numeric filters that always yield the values -1 and 1 respectively.

The btm and wtm filters are provided for convenience, the same behavior can be achieved with
sidetomove, e.g. sidetomove == white to determine if White has the move. The sidetomove
filter is useful when using position relationship filters to determine if two different positions
have the same side to move.

The check, mate, and stalemate Filters

The check, mate, and stalemate filters yield true if the current side to move is in check, is
checkmated, or is stalemated, respectively. The side to move is considered to be in check
if said side’s king is attacked by an opposing piece. For Standard chess, the check filter is
equivalent to:

flipcolor { wtm and K atackedby a }

The side to move is considered to be checkmated when the said side’s king is in check and no
legal moves are available. For Standard chess, the mate filter is equivalent to:

check and move legal count ==

The side to move is stalemated when there are no legal moves available and the king is not in
check. The stalemate filter is equivalent to:

not check and move legal count ==

Note that some chess variants supported by CQLi have different notions of what constitutes
check, mate and/or stalemate. For example, some variants allow pawns to be promoted to
kings which are not subject to check. See Behavior of check, mate, and stalemate with
Variants for details of how these filters work with such variants.

Examples

The below query will find checkmates delivered via a discovered double check:

46 BOARD STATE FILTERS

mate
flipcolor { wtm a attacks K > 1 }

To find smothered mates (defined here as mate delivered by an opposing knight where the king
is surrounded by friendly pieces preventing its potential escape), the below query may be used:

mate
flipcolor {

wtm

[_a] attackedby K == []
}

The below query will find stalemates that occurred as the result of a pawn promoting to a
queen:

stalemate
move previous promote Q

An example of such a game is:

/% m_m s

o
k
k
k

/ % m
woE

a b ¢ d e f g h

(00)
k
k
\\
k
&&
xxN

\\
§
N\

x
x\\
A\

%

NUJ-h

Al

&
\\
\\

>

A\
A\

Stalemate after promoting to queen

Black played 57...91=Q?? stalemate. Black could have mated in 3 by instead playing
7...91=Ror 57...h1=Q.

The following query will find positions where the side to move has at least 4 legal moves but
all of them, save one, results in stalemate:

THE COLORTYPE AND TYPE FILTERS

(move count legal == move count legal : stalemate + 1) > 3

Here is one such position found by this query:

/8/

NUJ-PU'IO\\IOO

W

///// %
o W

> >
>
///

_
///

5>
A /%%%

.
Dy

a

All moves are stalemate except one

47

There are 10 legal moves by White in the above position, 9 of which are stalemate, the
remaining move is checkmate. The correct move is Nc7#, in the actual game White played

50.Ka577?.

The colortype and type Filters

The colortype and type filters each accept a single Set operand. If this operand does not
consist of exactly one square, the filter does not match the position. Otherwise the result is a
numeric value representing the piece type (for type) or piece type and color (for colortype)
present on the specified square. The numeric values used to represent piece types by the type

filter is given in the below table:

Piece Type Type Value
None / Empty 0
Pawn 1
Knight 2
Bishop 3
Rook 4

https://lichess.org/VErVNUTO

48 BOARD STATE FILTERS

Piece Type Type Value
Queen 5
King 6

The colortype filter additionally encodes piece color information in the result by negating the
type value for black pieces. For example, a white rook will be represented with the value 4 by
colortype and a black rook with the value -4; type would yield a result of 4 in both cases.

The typical use case of these filters is to check if the piece or piece type present on two squares
or in two positions are the same.

The currentfen and standardfen Filters

standardfen is a String filter whose result is the representation of the current board state in
Forsyth--Edwards Notation (FEN). The FEN string for the starting position in standard chess
is:

rnbgkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1

The first field provides a rank-major listing of piece placements starting at rank 8 with ranks
separated by slashes and pieces being presented in file order within each rank. A number
represents the specified number of consecutive empty squares in the rank. The second field is
either w or b indicating White or Black to move, respectively. The remaining fields represent
the castling permissions, the en passant target square, the halfmove clock, and the move
number. A - is used to represent the complete lack of castling permissions when appearing in
the third field and the lack of an en passant target square when appearing in the fourth field.

The currentfen filter is identical to standardfen except that the halfmove clock is always
represented as 0 and the move number represented as 1 making currentfen more amiable for
use as a dictionary key when identical board positions should produce the same key. See also
Positional Intersection and the zobristkey filter for similar applications.

These filters are useful to dump matching board positions for processing by external tools
outside of the PGN format.

Castling and X-FEN Format

CQLi uses the X-FEN notation to express castling rights in order to support Chess960. When
the castling rook is the one closest to the corner on the back rank, the standard KQ/kq notation
is used. Otherwise, the names of the files corresponding to the castling rooks are used
(uppercase for White, lowercase for Black). For Standard chess games, the castling rooks will
always be in the corner (since that is where they start and they cannot be used for castling
once moved) and the KQ/kq notation will be used.

https://en.wikipedia.org/wiki/Forsyth%E2%80%93Edwards_Notation
https://en.wikipedia.org/wiki/X-FEN#Encoding_castling_rights

THE FEN FILTER 49
En Passant Target Square

CQLi follows the standard FEN convention for encoding the en passant square, specifically if
the last move was a double pawn push, the en passant square will be populated even if there is
no opposing pawn attacking this square.

Extensions Supporting Variants

The Crazyhouse variant needs to track both pocket pieces and the pieces on the board that
have been promoted. This information is included in the FEN string to allow the full game
state to be reconstituted. CQLi represents the pocket pieces with a bracketed list appended to
the first field. Promoted pieces are represented by suffixing them with a ~ when they appear in
the piece placement field. For example, the below FEN represents a position where the white
queen on b8 and the black queen on f1 were both the result of pawn promotions and White
has a pawn and a knight in pocket while Black has a pawn and a bishop in pocket:

rQ~blkbnr/pp3ppp/8/2p5/5P2/8/PPPPK1qP/RNBQ1q~NR[PNpb] w kq - 6 9

In the Three-Check variant, it is necessary to track the number of remaining checks each side
can be exposed to. CQLi represents this information by inserting a new field between the
en passant target square field and the halfmove clock field of the form D+d where D is the
number of checks that White needs to deliver against Black to win and d is the number of
checks Black would have to deliver to White to win. For example, in the FEN below White can
win by delivering 1 more check to Black while Black would need to deliver 3 checks to White
to win via check:

5k2/p7/1p6/3B2P1/3P1rpl/b1P2P2/P5K1/7R w - - 143 4 34

The fen Filter

If the fen filter is not immediately followed by a string literal, it behaves the same as
currentfen. Otherwise the provided string literal must contain the piece placement por-
tion of a FEN string where the characters A, a, ., and — may be used in addition to the standard
piece characters allowed in a FEN string with their usual meaning in CQL. FEN strings are
checked at parse time and an invalid string argument will result in a parse error.

The fen filter matches the position if the pieces on the board in the current position correspond
to the provided FEN string. For example:

fen "k7/8/NKB5/8/8/8/8/8"

will match the position:

https://en.wikipedia.org/wiki/Forsyth%E2%80%93Edwards_Notation

50 BOARD STATE FILTERS

The FEN string is subject to manipulation by enclosing flipcolor, reversecolor, and dihedral
transform filters. For example:

flipcolor fen "k7/8/NKB5/8/8/8/8/8"

will also match the position:

/ .

= N w H U (o)} ~ [ee)
N N

V\

A / / /

cdefg

and the query:

THE HALFMOVECLOCK FILTER 51

flipcolor flip fen "k7/8/NKB5/8/8/8/8/8"

will match any of the following 16 FEN strings (these can be seen when using the --parse
option to show the transformed query tree):

k7/8/NKB5/8/8/8/8/8
8/8/8/8/8/5B2/5K2/5N1k
8/8/8/8/8/NKB5/8/Kk7
8/8/8/8/8/2B5/2K5/K1N5
7k/8/5BKN/8/8/8/8/8
5N1k/5K2/5B2/8/8/8/8/8
8/8/8/8/8/5BKN/8/7k
k1N5/2K5/2B5/8/8/8/8/8
8/8/8/8/8/nkb5/8/K7
5n1K/5k2/5b2/8/8/8/8/8
K7/8/nkb5/8/8/8/8/8
K1n5/2k5/2b5/8/8/8/8/8
8/8/8/8/8/5bkn/8/7K
8/8/8/8/8/50b2/5k2/5n1K
7K/8/5bkn/8/8/8/8/8
8/8/8/8/8/2b5/2k5/K1n5

In most cases, it is easier and clearer to use piece designators to specify desired piece
arrangements but the fen filter is convenient when looking for positions that match a FEN
string copied from a chess program, online game, or other electronic media. See also the
- -fen option.

The halfmoveclock Filter

The halfmoveclock filter yields the current value of the halfmove clock, an integer that
represents the number of halfmoves (plies) for which no captures or pawn moves have been
made. By default, all games start with a halfmove clock initialized to zero. Games may specify
a different initial value by using the FEN PGN tag which will be honored by CQLi.

The following query will find positions where a valid claim fifty-move rule claim becomes
available, i.e. each side has made 50 moves without a capture or pawn push and the side to
move is not mated or stalemated:

halfmoveclock == 100
move legal

52 BOARD STATE FILTERS

The movenumber Filter

The movenumber filter yields the move number of the current position. Move numbers start at
1 unless the FEN PGN tag specifies a valid alternate starting move number in which case the
initial position starts at the specified move number. The move number is incremented after
each move by Black, regardless of the side to move in the initial position. The movenumber
filter always matches the position. The query below will find games that end before move 20:

terminal
movenumber < 20

Pawn Structure Query Filters

A group of two or more pawns of the same color on adjacent files are connected. The group
must span at least two files and consists of all of the pawns in the adjacent files. A pawn is
isolated if there are no friendly pawns in an adjacent file.

A group of two or more pawns of the same color on a single file are doubled. The pawns in the
group need not occupy adjacent ranks. A pawn that has no opposing pawns in front of it on the
same or adjacent file (i.e. a pawn that can keep it from advancing) is a passed pawn.

The connectedpawns filter evaluates to the set of squares occupied by connected pawns on
both sides. The doubledpawns, isolatedpawns, and passedpawns filters similarly evaluate to
the set of squares occupied by doubled pawns, isolated pawns, and passed pawns, respectively.

A pawn query can be isolated to a particular side by using the bitwise and operator & For
example, the query

passedpawns & p
will yield the set of squares occupied by passed black pawns. The query
doubledpawns & a-d1-8
will yield the set of queen side doubled pawns. Connected passed pawns can be found using
connectedpawns & passedpawns
Note that every pawn is either isolated or connected so
isolatedpawns & connectedpawns
will always evaluate to the empty set and
isolatedpawns | connectedpawns == [Pp]

will always be true.

PAWN STRUCTURE QUERY FILTERS 53

In the diagram below, the connected pawns are highlighted in blue and the isolated pawns
are highlighted in red.

d e

Connected and isolated pawns

In the following diagram, passed pawns are highlighted in blue and doubled pawns in red.

/////‘////
//

% % iry
APy
ma = o
T B mem
B EEE

Nw.hu-nm\loo
\

=

Passed and doubled pawns

The pawn on a7 is both passed and doubled so it is highlighted twice.

54 BOARD STATE FILTERS

Equivalent filters

The pawn structure query filters do not provide any new functionality, the effect of each of
these filters can be accomplished using existing CQL filters. Instead, these filters provide a
convenient short-hand that is easier to type and understand. The functional equivalents for
each of the pawns structure query filters is provided in the table below for instructive purposes.
In CQLI the shorter versions are optimized and execute faster than the written out equivalent.

Filter Equivalency

connectedpawns notransform
flipcolor {
P & horizontal 1
vertical 0 7 P
}

doubledpawns notransform
flipcolor {
P & vertical P

}
isolatedpawns notransform
[Pp] &
~ flipcolor
P & horizontal 1
vertical 0 7 P
passedpawns notransform

flipcolor {
P & ~down horizontal 0 1 p

}

The use of notransform in the above equivalencies is necessary to prevent undesired transfor-
mations when appearing inside of a rotate90 filter.

Querying Other Pawn Structures

Tripled and Quadrupled Pawns

Tripled pawns can be found using:
shifthorizontal flipcolor { TP = down a8 & P TP > 2 TP }

Quadrupled pawns may be found by replacing TP > 2 with TP > 3 in the above query.

THE POWER FILTER 55

Advanced Pawns

A pawn that has passed its own fourth rank is sometimes referred to as an advanced pawn.
Advanced pawns can be found with the query

flipcolor Pa-h5-8

Fixed Pawns

A pawn that is blocked by an opposing pawn immediately in front of it is sometimes called a
fixed pawn. Fixed pawns can be found using

flipcolor p & up 1 P

Pawn Chains

A pawn chain is two or more pawns of the same color that are diagonally adjacent. Pawn chains
can be found using

flipcolor P & diagonal 1 P

The base of a pawn chain is the pawn in the chain that is not defended by another pawn. The
bases of pawn chains can be located with the query

(flipcolor P & diagonal 1 P) & (flipcolor P & ~ up horizontal 0 1 P)

The power Filter

The power filter takes a single Set argument S and returns a numeric value representing the
sum of the power of each of the pieces that occupy the squares in S. For the purpose of this
filter, each piece has a static power value, expressed in terms of the power of a pawn, given by
the table below.

Piece Power Value

King
Pawn
Knight
Bishop
Rook

Queen

© U1 W W PR o

56 BOARD STATE FILTERS

power X, where X is a set filter, is therefore equivalent to:
#[Ppl&X + #[Nn]&X * 3 + #[Bb]&X * 3 + #[Rr]&X * 5 + #[Qql&X * 9

The power filter always matches the position and yields a value of zero if the provided Set is
empty or there are no non-king pieces occupying the squares in Set.

A user-defined function can be employed to calculate the power of pieces using alternative
piece values. For example, if rooks should be valued at 5.5 pawns, queens at 10, and bishops
at 3.5, the following function can be used:

function altPower(X) {
#[Ppl&X * 10 + #[Nn]&X * 30 + #[Bb]&X * 35 +
#[Rr1&X * 55 + #[Qql&X * 100
}

Because numeric values in CQL are integers, relative values need to be scaled. The altPower
function therefore represents power in decipawns (tenths of a pawn) instead of pawns.

The ply Filter

The ply filter yields the ply of the current position. The ply represents the number of half-
moves made since the initial position. The ply starts at zero for the initial position (regardless
of the move number specified by an optional PGN FEN tag) and is incremented by one for each
half-move played by either side.

The following query will find games with a length of at least 200 ply (at least 100 moves played
by each side):

ply == 200

Note that this will not limit matches to games with exactly 200 ply but rather match any games
that have a position where ply is 200. Using ply >= 200 will achieve the same results except
that every position above ply 200 will be commented instead of just the position at ply 200
(the --quiet or --matchstring="" options may be used to prevent matched positions from
being commented at all). To find games that end at a particular ply, use terminal to match the
desired ply at the terminal position, e.g.:

terminal
ply == 200

Changing == in the above query to >= will find all games with 200 plies or more and comment
only the terminal position instead of the position that represents the 200™ ply.

Note that an even ply typically represents a position where it is White to move and an odd ply
Black to move but this is not always the case. If the game contains a FEN tag that specifies

THE PROMOTEDPIECES FILTER 57

Black to move in the starting position, even plies will correspond to Black-to-move positions.
Use the wtm and btm filters to determine which side has the move.

The promotedpieces Filter

The promotedpieces filter yields the set of squares occupied by promoted pawns. For example,
the query:

promotedpieces & Q
promotedpieces & q

will match positions where both sides have a promoted queen on the board.

Tracking of promoted pieces is necessary for the Crazyhouse variant (captured promoted
pieces are dropped as pawns instead of the promoted piece type) but CQLi performs promoted
piece tracking for all variants.

The zobristkey Filter

CQLi maintains a 64-bit Zobrist hash key for each position, the zobristkey filter yields a
string containing the hexadecimal representation of this value for the current position.

A Zobrist hash is calculated by XORing predefined 64-bit keys that correspond to characteristics
of the current board state. Invented by Albert Zobrist, this simple but effective method is
fast to calculate and produces significantly different values for similar positions, providing
positional keys that are all but guaranteed to be different for different positions in a game
(like all hashing methods, collisions are possible but it is very extremely unlikely for different
positions in a recorded game to have the same Zobrist hash) and guaranteed to be identical for
identical positions even in different games.

The Zobrist hash incorporates the following pieces of board state into the hash key:

The piece type and color present on each square.

Castling permissions for each side.

En-passant capture rights.

The side to move.

The pieces each side has in their pocket (only used for the Crazyhouse variant).

For the purpose of calculating the Zobrist hash, the side to move is considered to have “en
passant capture rights” if the last move was a double-pawn push and the side to move has a
pawn that attacks the square behind this pawn, even if en passant capture would otherwise be
illegal (e.g. because the pawn is pinned).

58 BOARD STATE FILTERS

In particular, the ply, move number, and half-move clock (i.e. number of half-moves since
the last capture or pawn push) do not influence the value of the Zobrist key making it an
effective mechanism to detect positional repetition which is how such detection is commonly
employed by chess engines. See Detecting 3-fold Repetition for an example of how this can be
accomplished using the zobristkey filter.

Polyglot Compatibility

For Standard chess, CQLi produces Polyglot-compatible hash keys which means the produced
hash will match the keys used by Polyglot opening books and the zobristkey filter can be used
to look for position matching a Polyglot hash. For Crazyhouse, CQLi will hash pocket pieces
using its own keys making Zobrist keys for this variant unique to CQLi. No other variants
introduce new state information into the Zobrist hash.

A Note About Collisions

While it is guaranteed that two identical positions will have the same Zobrist key, it is possible
that two different positions also produce the same key, this is called a hash collision. The
likelihood of hash collisions is directly related to the size of the hash and the number of keys
generated. With the 64-bit hash employed for Zobrist keys a collision would be expected about
once in every few billion keys. In practice this is rarely a concern. For an application that is
not able to tolerate the possibility of collisions of this frequency, a full or partial fen string may
be used. Using FEN strings as keys takes more space (because FEN strings are larger than
Zobrist hashes) and the currentfen filter is slower than the zobristkey filter because FEN
strings are calculated on demand while Zobrist keys are not.

Board Geometry Filters

Direction Filters

A direction filter consists of a basic or compound direction keyword followed by an optional
range and a Set target filter. The result is the set of squares that can be reached by moving
in the specified direction from any of the squares in the target set. If an optional range is
provided, only the squares that can be reach in a number of steps enclosed by the range are
included, a range of 1 7 is implied if not provided. If the range includes 0, the squares in the
target set are included in the result. Negative values included in the range represent squares
that can be visited by moving in the opposite direction.

The eight basic directions are: up, down, left, right, northeast, northwest, southeast, and
southwest. The compound directions and their component directions are given in the below
table.

Compound Direction | Component Directions
vertical up, down

horizontal left, right

orthogonal vertical, horizontal
maindiagonal northeast, southwest
offdiagonal northwest, southeast
diagonal maindiagonal, offdiagonal
anydirection orthogonal, diagonal

59

60 BOARD GEOMETRY FILTERS

Examples

Z

wi Ty

a b c d e f g h

H N W b~ U1 O N

diagonal 0 2 f5

diagonal 1 orthogonal 1 e5 anydirection 1 [Kk]

The between Filter

The between filter takes two Set arguments, setl and set2, and returns the set of squares
that are between any two squares S; and S; where S; is a square in setl and S, is a square
in set2. A square S is between two squares S; and S, if S is present in the set that results
from evaluating the query anydirection sql & anydirection sq2. In other words, if S is
traversed when starting on S; and moving in a single direction to reach S; then S is between
S; and S;. Similarly, if S; can be reached by moving in a single direction from S and S, can be
reached by moving in the opposite direction from S, then S is between S; and S,.

THE DARK AND LIGHT FILTERS 61

The below diagram shows the result of the query between([al,a3,gl] a-h8).

/7//
////////
////
w_a___
».B Py
v
. EE N3

NU)-bU'IO\\Im

=

Squares between [al,a3,gl] and a-h8

The dark and light Filters

The light and dark filters each accept a single Set argument and yield the set of light or dark
squares, respectively, contained in the provided set. For example:

dark [Bb]

represents the squares on which dark-squared bishops reside and:

move to light . legal from R

represents the light squares on which a white rook may legally move in the current position.

The meanings of dark and light are influenced by color transforms (see Transform Filters).
For example:

flipcolor dark [Aa] == [Aa]

will match any position where all pieces of both sides reside either on light squares or dark
squares.

62 BOARD GEOMETRY FILTERS

The file and rank Filters

The file and rank filters each take a single Set argument. If the set argument contains exactly
one square, the result is the numeric value of the corresponding file or rank of the square,
respectively, otherwise these filters yield None. The numeric values returned by these filters
are in the range 1-8 with file a having the value 1 and file h having the value 8.

For example, the Chebyshev distance (the minimum number of king moves needed to move
between two squares) between two squares sql and sq2 is given by the query:

max(abs(file sql - file sq2) abs(rank sql - rank sq2))

The makesquare Filter

The makesquare filter accepts either a single String argument or two Numeric arguments, and
yields a set value representing the square corresponding to its argument(s) or an empty set if
the provided input is not valid.

makesquare with a String Argument

A string argument represents a square if it consists entirely of two characters, the first being a
lowercase letter between a-h and the second being a digit between 1-8. For example, “c4” and
“h7” represent valid squares but “C4”, “c 4”, and “4c” do not. Thus:

makesquare "f6" == f6
makesquare "f6x" == []

makesquare with Numeric Arguments

This form of the makesquare filter accepts a parenthesized argument list consisting of two
Numeric values, the first specifying the file and the second specifying the rank. Valid values
for file and rank, and their corresponding meaning, is the same as the values returned by the
file and rank filters. If both arguments have valid values (numbers between 1 and 8), the
result if a set value representing the corresponding square, otherwise the result is an empty
set. Thus:

makesquare(l 3) == a3
makesquare(6 1) == f1
makesquare(0 3) == []
makesquare(3 9) == []

Ray Filters

A ray is a set of squares in a straight line formed by starting at a given square and moving
forward in one of the eight basic directions. A ray is distinguished from a line in that the
former implies a direction while the latter does not.

CQL provides three ray filters which search for pieces arranged in specific patterns along a
ray on the chess board: ray, xray, and pin. The ray filter is the most general of these filters
and can be used to find any arrangement of pieces along a ray. The xray filter is similar but
sequences are limited to those where the first piece in the ray is a sliding piece that can move
in the direction of the ray. pin is a filter specialized for finding and reporting pieces that are
pinned against another piece or square by an opposing sliding piece.

The ray Filter

ray [direction ...] (Set, Set, ...) = Set

The ray filter accepts zero or more directions followed by a parenthesized list of two or more
Set filters. directions may be any simple or compound directions, a default of anydirection
is used if no direction is provided. The result of the ray filter is the set of squares on which
matching rays terminate. Matching rays are those that begin on a square in Set; and, moving
in a prescribed direction, consecutively include a square in each successive set Set; in the list
of provided sets with only unoccupied squares being allowed to appear between successive
sets.

Some examples of ray filters include:

ray (A a A a) // Four pieces in a line of alternating color
ray diagonal (B n k) // White bishop pinning a black knight
ray up (R [Pp] r) // Opposing rooks on a file separated by a pawn

The following query will match any position for which there is an orthogonal ray containing
two white rooks, a black queen, and a black king, in that order, without any other pieces in
between, i.e. a rook battery pinning the black queen to its king:

ray orthogonal (R R gq k)
Such a situation occurs in the following position:

63

64

a

The table below contains other examples of rays shown in the above diagram.

7

////// Z

b

Examples of rays

Ray Example Ray Start | Ray End
ray(Q b3) c2 b3
ray(Q b2) c2 b2
ray(N p r) c3 h8
ray(a4 a h4) a4 h4
ray(el cl al) el al
ray(b - . _ A) b7 g2
ray down (_ _ _ _ _ _) f8 f3

RAY FILTERS

The filter ray(r r) would not match the position in the above diagram because of the presence
of the black king between the two black rooks, only empty squares may appear between the
consecutive set arguments in the ray filter.

A single ray filter may match multiple rays in which case the result will be the set of the
endpoints of all matching rays. For example, ray(p p) matches rays ending on squares a7, b6,
g6, a7, and h7. The filter ray right (al _) will also match multiple rays ending on squares
bl, c1, and d1 as empty squares may appear between the squares specified by al and _.

The result of the ray filter represents the end of the matching rays, to obtain the beginning of
matching rays simply reverse the set arguments (and possibly the direction) of the ray filter,

e.g. ray orthogonal (k q R R) instead of ray orthogonal (R R q k).

THE XRAY FILTER 65

The xray Filter

xray (Set; ... Set,) = Set

The xray filter finds pieces along a ray such that a sliding piece in Set; would attack a square
in Set, if the squares between them were unoccupied. The result of the xray filter is the set
of squares on which matching rays terminate. Matching rays must consecutively consist of a
square in each successive set Set; in the list of provided sets with only unoccupied squares
being allowed to appear between successive sets.

The colors of the pieces involved are not significant, it is not even required that pieces reside
on any of the squares except a square in Set;.

The following query looks for a white rook that x-rays a black queen through a white knight
such that the knight can move to a square not attacked by Black and simultaenously check the
black king:

xray (R (move from N to ~(. attackedby a): check) q)

The second argument to the xray filter in the above query uses the speculative move filter to
find moves by white knights to squares not attacked by Black that also result in check. The
result of the move filter is the set of squares on which matching knights reside since the first
parameter to the move filter is from.

One position matching this query is:

//
&/

/%

~

3 \
§'~

w & ul)]
\ e

%//&
) /%/ﬁ”
//%@/

N

=

Examples of xrays

In the above diagram, the matching xray is shown in red (the move 1.Nd6+ wins the black

66 RAY FILTERS

queen), some other examples of xrays are shown with blue arrows.
Note that an xray filter of the form

xray (S;...Sy)
is functionally equivalent to:

ray orthogonal ((S:&[RrQq]l) ... S,)
| ray diagonal ((S;&[BbQq]) ... S;)

n

The pin filter

pin [from Set] [through Set] [to Set] = Set

A pin is induced from a piece P, on square Sy through a piece Py on square Sy to a square S,
when all of the following are true:

Py attacks Py

P, and Py are opposite colors

S, is not attacked by P, but would be if P; were not present on S,
S, is unoccupied or is occupied by a piece of the same color as Py

In such a case, Py is said to be pinned to S, by the pinning piece P,. Note that only sliding
pieces (bishops, rooks, and queens) can induce a pin. Py attacks Py if Py, would be in check by
Py if Py were a king. In particular, Py attacks Py even if Py is itself pinned. It can be inferred
from the above definition that Sy, Sy, and S, must be distinct squares.

The pin filter finds pins where the from, through, and to squares each match a particular set
of squares specified by the optional from, through, and to parameters. A default value of [Aa]
is used for each of from and through if not provided and a default value of [Kk] is used for to
if not provided, the result of which is to find absolute pins.

The pin filter is a set filter with a value that depends on the first parameter provided to the
filter. If from is specified first, the result is the set of squares occupied by the pinning pieces
matching the pin filter. If to is specified first, the result is the set of squares to which the
pinned pieces matching the pin filter are pinned. Otherwise, if through is specified first or
if no parameters are specified, the result is the set of squares occupied by pinned pieces
matching the pin filter.

When no parameters are provided,
pin
is equivalent to
pin through [Aa] from [Aa] to [Kk]

which has a value corresponding to the squares of pieces pinned to their king. The filter

THE PIN FILTER 67

pin from [Aa]
is equivalent to
pin from [Aa] through [Aa] to [KK]

and finds the same pins as pin but has a value of the squares occupied by the pinning pieces
instead of the pinned pieces.

N w H wu ()] ~ (o)
N N N

=
N

Example of pins

In the above diagram, there are 3 pinning pieces (highlighted in green) that each pin a
single opponent piece (highlighted in red). The squares the pinned pieces are pinned to are
highlighted in blue. The black rook on b3 pins the white pawn on b5 to the squares b6, b7,
and b8 even though there are no pieces on those squares and pawn cannot currently move to
another file. The black queen on d8 pins the white pawn on d7 to d6 and d5. The pawn is not
pinned to d4 because if the pawn were removed, the queen would not attack d4. The white
bishop on b1 pins the black pawn on e4 to the empty f5 square and the king on g6 but not to
the square h7 which would not be attacked by the bishop even if the pawn were removed.

The rook on b3 does not pin the bishop on bl because even though the rook attacks the bishop,
there is no square S, along the ray of attack that is not attacked by the rook but would be if
the bishop were removed (because the bishop is on the edge of the board).

Using the pin filter without any parameters in the diagrammed position will find just the black
pawn pinned to the black king. To find all of the pins shown, the query

pin to .

can be used which is equivalent to

68 RAY FILTERS

pin to . from [Aa] through [Aa]

Note that for the purposes of the pin filter, kings may be pinned (may occupy a square in the
through set) despite the fact that such a situation would ordinarily be referred to as a skewer
as an attacked king cannot legally remain in check.

Metadata Filters

The filters described in this section allow access to PGN game metadata including tag values,
ordinal position of the game within the PGN file, and the recorded game result.

The tag, settag, and removetag filters support querying, modifying, and removing PGN tags.

Convenience filters provided for extracting information from standard PGN tags include elo,
event, player, result, site, and year.

The gamenumber filter yields the index of the current game within the PGN file and the result
filter supports querying of the recorded game result.

The result Filter

The result filter takes a single argument representing a game disposition and yields a Boolean
value indicating whether the game terminated with the specified disposition. The valid
arguments for the result filter are: 1-0 or "1-0" indicating a win for White, 6-1 or "0-1"
indicating a win for Black, 1-2/1-2 or "1-2/1-2" indicating a draw, and * or "*" indicating
an incomplete game. The result filter yields true if the specified disposition matches the
disposition of the current game and false otherwise.

The game termination token, not the value of the Result PGN tag, is used to determine the
game'’s disposition. To obtain the value of the Result PGN tag (which should match the game
termination token), use tag "Result".

The following query will detect and report conflicts between a game’s termination token
(via the result filter) and either the result recorded in the Result tag or the game’s actual
disposition (checkmate, stalemate, variant-specific win, etc).

cql()
mainline
terminal

$result_str = "x"

if result 1-0 then $result_str = "1-0"

else if result 0-1 then $result_str = "0-1"

else if result 1/2-1/2 then $result_str = "1/2-1/2"

69

70 METADATA FILTERS

if ($result_tag = tag "Result") and $result_tag '= $result_str {
message("Value of Result tag ('" $result_tag
"') is inconsistent with game termination token '"
$result_str "'")

}
$cur_side = if wtm then "white" else "black"
$off_side = if wtm then "black" else "white"

if variantwin {
if flipcolor { wtm not result 1-0 }
message("Game termination token '" $result_str
"' inconsistent with result of variant win by " $cur_side)
}
else if variantloss {
if flipcolor { wtm not result 0-1 }
message("Game termination token '" $result_str
"' inconsistent with result of variant loss by " $off_side)
}
else if variantdraw {
if flipcolor { wtm not result 1/2-1/2 }
message("Game termination token '" $result_str
"' inconsistent with result of variant draw")
}
else if stalemate {
if not result 1/2-1/2
message("Game termination token '" $result_str
"' inconsistent with result of stalemate")
}
else if mate {
if flipcolor { wtm not result 0-1 }
message("Game termination token $result_str
"' inconsistent with result of checkmate by " $off_side)

false

Tag Filters

Tag filters operate on the tag pairs appearing before the move text section of a PGN file.

TAG FILTERS 71

The Standard Tag Filters

The standard tag filters are date, eco, event, eventdate, site, and player.
When not immediately followed by a string literal, these filters yield a String whose value is
the value of the current game’s corresponding tag, as shown in the below table.

Filter Tag

date Date or UTCDate
eco ECO

event Event
eventdate EventDate

site Site

player White and Black

If the corresponding tag does not appear in the current game, the filter does not match the
position. The date filter will yield the value of either the Date or UTCDate tag, preferring Date
if present. The player filter may optionally be followed by the white or black keyword. The
filter player white will yield the value of the White tag and player black the value of the
Black tag. If player is not followed by black or white, the result is equivalent to:

notransform { player white + \n + player black }

Any of the standard tag filters may be immediately followed by a string literal in which case the
filter yields a Boolean value indicating whether the value of the string literal appears within
the value of the corresponding tag. E.g. site "X" is equivalent to "X" in site.

The year Filter

The year filter yields a Numeric result that corresponds to the year provided in either the Date
or UTCDate PGN tag for the current game. If neither of these tags is present or a valid year
could not be extracted from the tag, the year filter will not match the position. For example, to
limit games to those played between 2000 and 2005 use:

2000 <= year <= 2005

The elo Filter

The elo filter exposes information from supplemental tags in the tag pair section of the PGN
game related to player ratings. If the token following elo is black or white, the filter evaluates
to the numeric rating of the corresponding player. If the rating for the requested player is not
available, the filter does not match. If elo is not followed by black or white, the filter yields

72 METADATA FILTERS

the rating of the higher-rated player if the ratings for both players are present and does not
match the position otherwise.

Ratings are traditionally supplied via the WhiteElo and BlackElo tags but this is not universal
and several other tags are commonly used to provide this information. When parsing a PGN
game, the rating of each player is taken from the first tag in the below table that contains a
numeric value. If no matching tag is encountered, the rating for that player is considered to be
unavailable.

White Black

WhiteElo BlackElo
WhiteRating | BlackRating
WhiteRapid | BlackRapid
WhiteICCF BlackICCF
WhiteUSCF BlackUSCF
WhiteDWZ BlackDwz
WhiteBCF BlackBCF

The tag Filter

The tag filter accepts a single string argument which specifies the name of the PGN tag to
inspect, and yields a string value corresponding to the value of the specified tag in the current
game. If the specified tag is not present for the current game, the filter yields None.

The tag filter operates on the tags present in the PGN file, changes to tags via the settag or
removetag filters are not reflected in the evaluation of tag as these changes are not realized
until after the game has been processed.

The settag Filter

The settag filter accepts a parenthesized argument list consisting of two string filters. The
first string filter argument is the tag name and the second string argument is the tag value.
This filter sets the value of the specified tag, creating the tag if it was not originally present in
the PGN file. The new tag value is included in the output PGN written by CQLi.

The PGN format requires that tag names consist exclusively of letter, digit, and underscore
characters. If the name specified by the settag filter consists of characters besides A-Z, a-z,
0-9, or _, the filter yields None without making any changes. Existing tags with such invalid
names may be queried with the tag filter and removed with the removetag filter but may not
be created or modified via settag.

Caution should be exercised when using settag to set the value of standard tag names as this
may cause problems when read by other PGN-processing software. In particular, setting the

TAG FILTERS 73

value of the standard tag FEN is likely to elicit errors from chess software if the value of this
field does not correctly portray the initial position of the game.

The PGN standard forbids the use of non-printing characters in tag values. CQLi will replace
carriage return and linefeed characters appearing in the second argument to settag with
spaces but will not prevent other non-printing characters from being used in a tag value. The
PGN specification also limits tag values to “255 characters of data”, as a result some chess
software may have difficulty reading tag values that exceed 255 bytes.

Note that settag does not employ smart-comment-like semantics. The effects of a previously
evaluated settag filter will be realized even if the same position later fails to match.

If the --nosettag option specified, the settag filter behaves as described above except that
the change is not represented in the corresponding output PGN file.

Examples

The following query will set the tag PlyCount to the number of plies in the mainline:

cql(quiet)

mainline

terminal

settag("PlyCount" str ply)

The query below will set the tag TotalPlyCount to the total number of plies across all variations,
i.e. the total number of moves or the total number of positions not counting the initial position.

cql(variations quiet)
initial
settag("TotalPlyCount" str find all true - 1)

The next query will set the tag MaxPly to the largest ply of any position across all variations.
The echo filter will evaluate its target filter at every position. When the target of an echo filter
is a Numeric filter, the result is the value of the largest evaluation at any of the processed
positions. The target filter yields the ply of all terminal positions and the result of the enclosing
echo filter is the largest of these values. The in all parameter is used to include the initial
position in set of positions evaluated by echo so that a game without any moves will have a
MaxPly value of 0 instead of <None>.

cql(variations quiet)
initial
settag("MaxPly" str echo(x y) in all { terminal ply })

http://www.saremba.de/chessgml/standards/pgn/pgn-complete.htm

74 METADATA FILTERS

The removetag Filter

The removetag filter accepts a single string argument representing a tag name. The specified
tag will be removed from the current game when written to the output PGN file unless a later
evaluation of a settag filter specifies a value for the same tag name. If there is no tag of the
specified name to remove (either appearing in the original PGN content or previously added
with settag), the removetag filter has no effect. The removetag filter always yields true.

Caution should be exercised when using removetag with standard tag names as this may cause
problems when read by other PGN-processing software. In particular, removing the value of
the standard FEN or SetUp tags is likely to elicit errors from chess software if the game does
not start from the expected starting position.

Note that removetag does not employ smart-comment-like semantics. The effects of a pre-
viously evaluated removetag filter will be realized even if the same position later fails to
match.

If the --noremovetag option specified, the effects of the removetag filter are not honored.

The gamenumber Filter

Every game is assigned a game number by CQLi which is a one-based index representing the
physical order of the game within the PGN file. The first game in the PGN file has a game
number of 1, the second a game number of 2, etc. The gamenumber filter yields the game
number of the current game.

The proper ordering of game numbers is maintained even when using multiple threads where
one thread may process several games in the time it takes another thread to process one
game. When using the --gamenumber option to skip games, the indices of the skipped games
are not reused, e.g. the option --gamenumber 10 20 specifies that only games 10 through 20
(inclusive) should be processed and the gamenumber filter will yield values between 10 and 20
for these games.

The Gametree Filters

Synopsis

ancestor(Position Position) = Boolean
child = Position

child(Number) = Position
currentposition = Position

depth = Number

descendant (Position Position) = Boolean
distance(Position Position) = Number
initial = Boolean

initialposition = Position

Lca(Position Position) = Position
mainline = Boolean

parent = Position

position Number = Position
positionid = Number

terminal = Boolean

variation = Boolean

virtualmainline = Boolean

The Game Tree

A chess game forms a tree with nodes representing individual positions and edges that connect
two nodes representing the moves that transitions from one position to another. When there
are no variations, this tree is flat with each node having at most one child and a single path
from the initial position to the last position. The PGN format provides a syntax for specifying
variations (alternate moves) by enclosing moves corresponding to the variation in parentheses.
Variations can be nested and the resulting game tree may have many branches consisting of
nodes with two or more children.

For example, given the PGN game
l.e4 (1.d4 Nf6 (1...d5) 2.c4) 1...c5 (1...e5) (1...e6 2.d4 (2.d3) 2...c5 (2...d5))

the corresponding tree representation will look something like:

75

76 THE GAMETREE FILTERS

The number in each node is the position id which is the number that CQL assigns to each
position in a game and reflects the order in which positions are visited during game traversal.

The position with position id 0 represents the initial position of the game. Every position,
except the initial position, has exactly one parent which is the position that immediately
precedes the current position. Each position contains zero or more children which represent
positions reachable from the current position with a single move. In the figure above, the
initial position has two children, positions 1 and 9, and the parent of both of these children is
position 0.

Given two positions A and B occurring in a game, A is considered to be an ancestor of B if A
can be reached from B by iteratively traversing parent nodes, starting at B. In other words, if
and only if there exists a sequence of one or more moves, starting at A, that reaches position B,
then A is an ancestor of B. The initial position is therefore an ancestor of all other positions.
In the above diagram, position 1 is an ancestor of positions 2-8, position 4 is an ancestor of
positions 5-8, position 5 is an ancestor of positions 6-7, position 9 is an ancestor of positions
10-12, and position 10 is an ancestor of position 11. Position B is called a descendant of A if A
is an ancestor of B. In the above diagram, positions 2-8 are descendants of position 1, etc.

THE GAME TREE 77

If a position does not have any children (there are no recorded moves at the position), the
position is called a terminal position. The first move specified at a position is called the
primary move and any alternate moves specified are called secondary moves. The initial
position and all positions reachable from it via primary moves are called mainline positions, all
other positions (those that require traversing a secondary move to reach) are called variation
positions. In the above diagram, the left-most child always represents the position reached
from its parent via the primary move and all other children are reached via secondary moves.
In the diagram below, terminal positions are represented by double-circled nodes and mainline
positions are highlighted in green.

l.e4 (1.d4 Nf6 (1...d5) 2.c4) 1...c5 (1...e5) (1l...e6 2.d4 (2.d3) 2...c5 (2...d5))

The variation depth of a position is an integer that indicates how many secondary moves are
traversed to reach the position from the initial position. The variation depth also corresponds
to the number of unclosed parentheses at the corresponding position in the PGN file. Any
position with a variation depth of zero is a mainline position.

The latest common ancestor (LCA) of two positions A and B is the position with the greatest
ply that is a generalized ancestor of positions A and B. A generalized ancestor of A is either

78 THE GAMETREE FILTERS

an ancestor of A or A itself. Therefore, the LCA of positions A and B will be one of: A, B, or
an ancestor of both A and B. In the above figure, the LCA of positions 1 and 2 is position 1,
the LCA of positions 6 and 7 is position 5, and the LCA of 4 and 9 is the initial position. The
distance between two positions A and B is the sum of the number of moves that separates each
of A and B from the LCA of A an B. For example, the distance between positions 4 and 9 is 3
(the integer 3, not position 3) because the LCA of positions 4 and 9 is position 0, there are 2
moves separating position 0 from position 4 and 1 move separating position 5 from position 0;
the sum of which is 3.

A position is a virtual mainline position if it is a mainline position or if it can be reached from a
mainline position without traversing secondary moves when it is White to move. All children of
a virtual mainline position are virtual mainline positions if it is Black to move, otherwise only
the position resulting from the primary move is a virtual mainline position. In the following
diagram, all virtual mainline positions are highlighted in green and nodes that represent a
position where it is Black to move are designated as btm.

l.e4 (1.d4 Nfé (1...d5) 2.c4) 1...c5 (1...e5) (1...e6 2.d4 (2.d3) 2...c5 (2...d5))

THE ANCESTOR AND DESCENDANT FILTERS 79

The ancestor and descendant Filters

The ancestor and descendant filters accept a parenthesized list of two Position filters. The
filter ancestor(x y) matches the position if x and y are valid positions and position x is an
ancestor of position y. The filter descendant(x y) matches the position if x and y are valid
positions and position x is a descendant of position y. Note that ancestor(x y) is equivalent
to descendant(y x).

The child and parent Filters

The parent filter yields the position that is the parent of the current position. The parent will
fail to match the initial position which does not have a parent.

The child filter yields the position that results from the first child of the current position (the
one resulting from the primary move at the current position). The child(n) filter yields the n'
child at the current position. child(0) is equivalent to child and child(n) yields the position
that results from the n'" secondary move at the current position. If the specified child does not
exist at the current position, the child filter does not match.

Every position, except for the initial position, has exactly one parent. Every position will also
have zero or more children. To determine the number of children at the current position, the
following filter may be used:

currentposition: move count

The use of currentposition: prevents linearization within a line filter from restricting the
visible moves to those in the line being processed.

The currentposition, initialposition, position, and
positionid Filters

The currentposition filter yields the position that is currently being evaluated. The position
filter takes a single numeric argument and yields the position with the provided position ID.
If there is no position with the specified position ID, position yields the None value. The
positionid filter yields the numeric position ID of the current position. The initialposition
filter yields the position that is the initial position of the game, it is equivalent to position
0. initialposition always matches as all games, even those with no moves, have an initial
position.

80 THE GAMETREE FILTERS

The initial and terminal Filters

The initial filter matches if the current position is the initial position, i.e. the position with
position id 0 and no parent. Note that while the initial position is usually the standard starting
position in chess, this need not be the case if the FEN PGN tag is used to specify an alternate
initial position for the game. initial is equivalent to not parent and positionid ==

The terminal filter matches if the current position ends the mainline or a variation, i.e. if the
position has no children. terminal is equivalent to not child.

The mainline and variation Filters

A mainline position is one that can be reached from the initial position exclusively via primary
moves, all other positions are variations. The mainline filter matches if the current position is
a mainline position. The variation filter matches if the current position is a variation position.
mainline is equivalent to not variation and depth == 0. variation is equivalent to not
mainline and depth > 0.

The depth, distance, and lca Filters

The depth filter yields the variation depth of the current position, i.e. the number of secondary
moves that need to be traversed from the initial position to reach the current position. The
distance and lca filters each accept a parenthesized argument list containing two position
arguments. The lca filter yields the position that is the LCA (latest common ancestor) of the
provided positions. The distance filter yields the numeric distance between the provided
positions, i.e. the sum of the number of moves separating each position from the LCA of the
positions.

The virtualmainline Filter

The virtualmainline filter yields true if the current position is a virtual mainline position,
i.e. if it can be reached from the initial position without traversing secondary moves when it is
White to move.

Position Relationship Filters

The find filter is used to search for positions appearing either previous or subsequent to
the current position that match a provided filter. The echo filter is used to find relationships
between positions within a game. The consecutivemoves filter is used to determine the longest
series of consecutive moves in common between two variations.

The find Filter

find [quiet] [<--] [all | range] target-filter

The find filter evaluates the target-filter first at the current position and then at every position
that is a descendant of the current position until the result of target-filter matches the position
in which it is evaluated. The result of the find filter is the first position for which the target-
filter matched or None if no position matches. If the token <-- appears immediately after find
and the optional quiet keyword, the target-filter will be evaluated for each ancestor position
instead of each descendant. If the all keyword appears immediately before the target-filter,
the search will not stop at the first matching position and the result of the find filter will
be the number of matching positions or None if no searched position matches. If a range is
provided in place of all, the result will be the number of matching positions if the number of
matching positions is within the provided range (which may include zero) and None otherwise.

Positions are searched in position ID order (ascending order for descendants, descending
order for ancestors) which is the same order that CQLi uses to process positions in the game
evaluation loop.

Auxiliary Comments

When a find filter matches, automatic comments are applied to the positions for which target-
filter matched by default. If neither all nor a range is provided, the comment Found will be
applied to the single matching position, otherwise each matching position will have a comment
of the form Found i of n where n is the total number of matching positions that were found and
i is the index (1 < i < n) of the match based on the search order. The automatic comments
generated by the find filter are suppressed if the quiet parameter is specified or the - -quiet
or --silent commandline options are used.

81

82 POSITION RELATIONSHIP FILTERS
Use Cases

The find filter is particularly useful in situations where it is more natural to search all positions
for each iteration over a set of pieces or squares than it is to construct the search over positions
in the main loop. In such cases the find filter is typically preceded by initial to ensure the
query is only executed once per game instead of once per position. One such common theme is
when searching for the “greatest” or “least” of some situation across games. For example, to
find the greatest number of captures by a single piece in a game, something that would be
quite awkward without using the find filter, the following query may be used:

// Games with 10 or more captures by a single piece
initial
piece $p in [Aa] {

sort "Number captures by single piece"

{ find all move previous capture . from $p } >= 10

In the initial position, the piece filter is used to iterate over all black and white pieces. For
each piece, the find filter is used to count the number of positions where the move that led
to the position was a capture by the current piece. If the total number of matching positions
is greater than or equal to 10 then the game matches. Because the find filter is enclosed
by a sort filter, only the largest value returned by find across all iterations will be reported
for the game. Matching games will also be sorted in the output PGN file with games with
the largest number of single-piece captures appearing first. The Smart Comments facility
ensures that the comments automatically added by find are discarded unless they correspond
to a piece that simultaenously has more captures than any other piece and has 10 or more
captures. Captures by a pawn before and after promotion will both be counted toward the
total number of captures for that piece by virtue of the Piece Tracking mechanism. The find
filter will insert comments enumerating each capture by the piece with the greatest number of
captures for each matching game. An example of a matching game with the find and sort
comments inserted is:

{Number captures by single piece: 13} 1.e4 c5 2.Qh5 d6 3.Bc4 e6 4.Qh4

Qxh4 {Found 1 of 13} 5.9g3 Qxe4+ {Found 2 of 13} 6.Ne2 Qxc4 {Found 3 of 13}
7 .Nec3 Nc6 8.Na3 Qd4 9.Ne2 Qe5 10.0-0 Nb4 11.Nc4 Qxe2 {Found 4 of 13}
12.Rel Qxel+ {Found 5 of 13} 13.Kg2 Qe4+ 14.Kgl Qxc4 {Found 6 of 13} 15.b3
Qxc2 {Found 7 of 13} 16.Ba3 Nxa2 17.Rxa2 Qxa2 {Found 8 of 13} 18.Bb4 Qxb3
{Found 9 of 13} 19.Kg2 Qxb4 {Found 10 of 13} 20.h4 Qe4+ 21.f3 Qe2+ 22.Kh3
Qxf3 {Found 11 of 13} 23.d3 Qxd3 {Found 12 of 13} 24.Kg4 e5+ 25.Kg5 Qf3
26.94 Qxg4# {Found 13 of 13} 0-1

The following query uses find inside a square iterator to find games with the largest number
of captures (by both sides) on a single square:

// Games with 10 or more captures on a single square
initial

THE ECHO FILTER 83

square sq in . {
sort "Most captures on a single square"
{ find all move previous capture sq } >= 10

}

Note that this does not limit captures to consecutive captures. See the line filter for an
example that will find the longest series of consecutive captures.

The following query will find games with more than 5 promotions, sorted by the number of
promotions in the game:

// Games with more than 5 promotions
initial
sort "Number of promotions" find all move promote A previous > 5

For games containing variations, promotions occurring in separate lines will all contribute to
the total which likely is not desired. To limit the total to those occurring within a single line,
it is necessary to consider the moves of each line separately. This can be done by using find
<-- to search backwards from each terminal position:

// Games with more than 5 promotions in a single line
terminal
sort "Number of promotions" find <-- all move promote A > 5

The same method could be applied to the previous examples as well. In most cases it probably
will not be desired to consider variations at all in which case variations can simply not be
enabled or the mainline filter can be used to limit positions searched by the find filter to
mainline positions.

The backwards searching find filter is often combined with terminal in the same way that
the forward searching find filter is combined with initial. For example, to find games where
neither side castled, the following query may be used:

// Games where neither side castled
terminal
not find <-- move castle

The echo Filter

echo [quiet] (source target) [in all] target-filter

The echo filter is used to search for arbitrary relationships between positions in a game.
The echo filter takes a parenthesized list of two identifier names and creates a new variable
scope in which Position variables with the names source and target are created. The target-
filter is then evaluated once for every position in the game except the current position. For

84 POSITION RELATIONSHIP FILTERS

each evaluation of target-filter, the source variable is set to the original current position,
and the target variable is set to the new position. If in all appears immediately after the
parenthesized list, the original current position is included in the list of target positions. Target
positions are processed in position ID order.

If target-filter has Numeric type, the echo filter is also Numeric with the result being the
largest value of target-filter during evaluation of the echo filter. Otherwise the type of echo is
Boolean and matches the position if any evaluation of target-filter matches the position.

For example, to find pairs of positions that are identical except for the side to move, the
following query may be used:

echo (source target) {
source & target == .
sidetomove != source:sidetomove

}

Note that while it is conventional to name the source and target variables source and target,
they may have any valid variable names. The following example will find pairs of positions that
differ only in that en passant capture is available in the one case and not in the another:

move legal enpassant
echo (source target) {
not move legal enpassant
source & target == .
sidetomove == source:sidetomove
source:move legal enpassant:
comment ("enpassant capture " currentmutation " legal here")
comment("enpassant capture not legal here")

}

Below is a matching study found in the HHdbVI endgame study database:

{Schach/3 (EG#21134).} {Game number 6319} 1.Bf2+ $1 1...Khl 2.Kf3 f4 {LCA}
(2...95 3.Bg3) 3.c5 $1 (3.94 $2 3...95 4.c5 {enpassant capture not legal here}
{target -->move 4(btm)} {id:14}) 3...95 4.94 {CQL} {enpassant capture 4...fxg3
legal here} {source <--move 4(btm)[14]} 4...fxg3 5.Bxg3 Kgl 6.Bxh2+ 1-0

Auxiliary Comments

As can be seen in the above example, the echo filter adds several types of comments for
matching positions:

e For each matching pair identified by echo, the source position is annotated with a
comment of the form source <--target-position and the target position is annotated
with a comment of the form target -->source-position where source and target
correspond to the variable names used with echo.

THE ECHO FILTER 85

e A Position ID comment is added to variation positions referenced by a matching pair
annotation.

e If the LCA of source and target is neither source nor target, the LCA position will be
annotated with the comment LCA.

The automatic comments generated by the echo filter are suppressed if the quiet parameter
is specified or the --quiet or --silent commandline options are used.

Using echo with sort

If the target-filter of echo is a Numeric filter, the echo filter itself is a Numeric filter that may
be used as the target of a sort filter. As a special case, when the target of a sort filter is an
echo filter, Smart Comments will suppress all comments emitted from the evaluation of the
echo filter except those that correspond to the evaluation producing the largest numeric value.
This is particularly useful in situations where there are many matching position pairs that
would otherwise generate a large number of comments. Note that because a Numeric echo
filter maximizes the value of its target positions, an echo filter may not be used as the target of
a sort min filter.

Use Cases

The echo filter is particularly well-suited to situations in which specific relationships between
two positions are sought and either the nature of the relationship does not imply an ordering
between such positions or position pairs may span variations. When a relationship implies a
strong order (e.g. two positions in the same line in which one must have preceded the other),
the find filter may be more appropriate.

Aside from the comments that echo adds and the special behavior when combined with sort, a
query of the form:

echo (source target) {

can be approximated using the find filter:

source = currentposition
initialposition : find quiet all {
target = currentposition
source != target // Remove to obtain the 'in all' behavior

86 POSITION RELATIONSHIP FILTERS

The type and result of this query may also be different than the corresponding echo filter. The
echo query is of course more compact and introduces useful comments but the point is that
the basic functionality can be realized using the find filter and potentially tailored to specific
needs.

Performance Considerations

The use of echo can result in relatively slow queries as the target-filter is evaluated for every
position in the game every time the echo filter is reached. To mitigate the performance impact,
place gating checks before the echo filter when possible so that the echo filter is only evaluated
for positions that match some prerequisite criteria. An example of this is checking that en
passant capture is legal before entering the echo filter in the previous example.

The consecutivemoves Filter

consecutivemoves [quiet] [range] (positionl position2)

The consecutivemoves filter takes two Position arguments and determines the longest com-
mon sequence of i